This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/solvers/overset/potentialDyMOversetFoam/potentialDyMOversetFoam.C

190 lines
5.6 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration | Version: 4.0
\\ / A nd | Web: http://www.foam-extend.org
\\/ M anipulation | For copyright notice see file Copyright
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
Application
potentialDyMOversetFoam
Description
Transient solver for potential flow with dynamic overset mesh.
Author
Hrvoje Jasak, Wikki Ltd. All rights reserved.
Vuko Vukcevic, FMENA Zagreb. All rights reserved.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "dynamicFvMesh.H"
#include "pisoControl.H"
#include "oversetMesh.H"
#include "oversetFvPatchFields.H"
#include "oversetAdjustPhi.H"
#include "globalOversetAdjustPhi.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::validOptions.insert("reconstructU", "");
# include "setRootCase.H"
# include "createTime.H"
# include "createDynamicFvMesh.H"
pisoControl piso(mesh);
# include "createFields.H"
# include "initTotalVolume.H"
# include "initContinuityErrs.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.loop())
{
# include "checkTotalVolume.H"
Info<< "Time = " << runTime.timeName() << nl << endl;
bool meshChanged = mesh.update();
reduce(meshChanged, orOp<bool>());
# include "createOversetMasks.H"
// Update moving wall velocity boundary condition and calculate the flux
U.correctBoundaryConditions();
// Forced overset update: make sure the overset interpolation is
// performed regardless of whether the coupledFringe is specified.
oversetFvPatchVectorField::oversetInterpolate(U);
phi == (linearInterpolate(U) & mesh.Sf());
// Resetting pressure field
p.internalField() = 0;
# include "volContinuity.H"
# include "meshCourantNo.H"
// Solve potential flow equations
// Adjust fluxes
oversetAdjustPhi(phi, U); // Fringe flux adjustment
globalOversetAdjustPhi(phi, U, p); // Global flux adjustment
while (piso.correctNonOrthogonal())
{
p.storePrevIter();
Info<< "Initial flux contour continuity error = "
<< mag(sum(phi.boundaryField()))
<< endl;
fvScalarMatrix pEqn
(
fvm::laplacian
(
dimensionedScalar
(
"1",
dimTime/p.dimensions()*dimensionSet(0, 2, -2, 0, 0),
1
),
p
)
==
fvc::div(phi)
);
// Adjust non-orthogonal fringe fluxes if necessary
om.correctNonOrthoFluxes(pEqn, U);
pEqn.setReference(pRefCell, pRefValue);
pEqn.solve();
if (piso.finalNonOrthogonalIter())
{
phi -= pEqn.flux();
# include "oversetContinuityErrs.H"
}
else
{
p.relax();
}
// Perform overset interpolation (after flux reconstruction)
oversetFvPatchScalarField::oversetInterpolate(p);
}
// Update div phi field for visualisation purposes
oversetDivPhi = cellOversetMask*fvc::div(phi);
if (args.optionFound("reconstructU"))
{
U = fvc::reconstruct(phi);
U.correctBoundaryConditions();
}
Info<< "Interpolated U error = "
<< (
sqrt
(
sum
(
sqr
(
faceOversetMask*
(
(fvc::interpolate(U) & mesh.Sf())
- phi
)
)
)
)/sum(mesh.magSf())
).value()
<< endl;
// Calculate velocity magnitude
{
volScalarField magU = mag(U);
Info<< "mag(U): max: " << gMax(magU.internalField())
<< " min: " << gMin(magU.internalField()) << endl;
}
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return(0);
}
// ************************************************************************* //