280 lines
7.7 KiB
C
280 lines
7.7 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration |
|
|
\\ / A nd | Copyright held by original author
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 2 of the License, or (at your
|
|
option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM; if not, write to the Free Software Foundation,
|
|
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
Application
|
|
adiabaticFlameT
|
|
|
|
Description
|
|
Calculates the equilibrium flame temperature for a given fuel and
|
|
pressure for a range of unburnt gas temperatures and equivalence
|
|
ratios; the effects of dissociation on O2, H2O and CO2 are included.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "argList.H"
|
|
#include "Time.H"
|
|
#include "dictionary.H"
|
|
#include "IFstream.H"
|
|
#include "OSspecific.H"
|
|
#include "IOmanip.H"
|
|
|
|
#include "specieThermo.H"
|
|
#include "janafThermo.H"
|
|
#include "perfectGas.H"
|
|
|
|
using namespace Foam;
|
|
|
|
typedef specieThermo<janafThermo<perfectGas> > thermo;
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
argList::validArgs.clear();
|
|
argList::validArgs.append("controlFile");
|
|
argList args(argc, argv);
|
|
|
|
fileName controlFileName(args.additionalArgs()[0]);
|
|
|
|
// Construct control dictionary
|
|
IFstream controlFile(controlFileName);
|
|
|
|
// Check controlFile stream is OK
|
|
if (!controlFile.good())
|
|
{
|
|
FatalErrorIn(args.executable())
|
|
<< "Cannot read file " << controlFileName
|
|
<< abort(FatalError);
|
|
}
|
|
|
|
dictionary control(controlFile);
|
|
|
|
|
|
scalar P(readScalar(control.lookup("P")));
|
|
word fuel(control.lookup("fuel"));
|
|
scalar n(readScalar(control.lookup("n")));
|
|
scalar m(readScalar(control.lookup("m")));
|
|
|
|
|
|
Info<< nl << "Reading Burcat data dictionary" << endl;
|
|
|
|
fileName BurcatCpDataFileName(findEtcFile("thermoData/BurcatCpData"));
|
|
|
|
// Construct control dictionary
|
|
IFstream BurcatCpDataFile(BurcatCpDataFileName);
|
|
|
|
// Check BurcatCpData stream is OK
|
|
if (!BurcatCpDataFile.good())
|
|
{
|
|
FatalErrorIn(args.executable())
|
|
<< "Cannot read file " << BurcatCpDataFileName
|
|
<< abort(FatalError);
|
|
}
|
|
|
|
dictionary thermoData(BurcatCpDataFile);
|
|
|
|
|
|
Info<< nl << "Reading Burcat data for relevant species" << nl << endl;
|
|
|
|
// Reactants
|
|
thermo FUEL(thermoData.lookup(fuel));
|
|
thermo O2(thermoData.lookup("O2"));
|
|
thermo N2(thermoData.lookup("N2"));
|
|
|
|
// Products
|
|
thermo CO2(thermoData.lookup("CO2"));
|
|
thermo H2O(thermoData.lookup("H2O"));
|
|
|
|
// Product fragments
|
|
thermo CO(thermoData.lookup("CO"));
|
|
thermo H2(thermoData.lookup("H2"));
|
|
|
|
|
|
// Product dissociation reactions
|
|
|
|
thermo CO2BreakUp
|
|
(
|
|
CO2 == CO + 0.5* O2
|
|
);
|
|
|
|
thermo H2OBreakUp
|
|
(
|
|
H2O == H2 + 0.5*O2
|
|
);
|
|
|
|
|
|
// Stoiciometric number of moles of species for one mole of fuel
|
|
scalar stoicO2 = n + m/4.0;
|
|
scalar stoicN2 = (0.79/0.21)*(n + m/4.0);
|
|
scalar stoicCO2 = n;
|
|
scalar stoicH2O = m/2.0;
|
|
|
|
// Oxidant
|
|
thermo oxidant
|
|
(
|
|
"oxidant",
|
|
stoicO2*O2
|
|
+ stoicN2*N2
|
|
);
|
|
|
|
dimensionedScalar stoichiometricAirFuelMassRatio
|
|
(
|
|
"stoichiometricAirFuelMassRatio",
|
|
dimless,
|
|
(oxidant.W()*oxidant.nMoles())/FUEL.W()
|
|
);
|
|
|
|
Info<< "stoichiometricAirFuelMassRatio "
|
|
<< stoichiometricAirFuelMassRatio << ';' << endl;
|
|
|
|
Info<< "Equilibrium flame temperature data ("
|
|
<< P/1e5 << " bar)" << nl << nl
|
|
<< setw(3) << "Phi"
|
|
<< setw(12) << "ft"
|
|
<< setw(7) << "T0"
|
|
<< setw(12) << "Tad"
|
|
<< setw(12) << "Teq"
|
|
<< setw(12) << "Terror"
|
|
<< setw(20) << "O2res (mole frac)" << nl
|
|
<< endl;
|
|
|
|
|
|
// Loop over equivalence ratios
|
|
for (int i=0; i<16; i++)
|
|
{
|
|
scalar equiv = 0.6 + i*0.05;
|
|
scalar ft = 1/(1 + stoichiometricAirFuelMassRatio.value()/equiv);
|
|
|
|
// Loop over initial temperatures
|
|
for (int j=0; j<28; j++)
|
|
{
|
|
scalar T0 = 300.0 + j*100.0;
|
|
|
|
// Number of moles of species for one mole of fuel
|
|
scalar o2 = (1.0/equiv)*stoicO2;
|
|
scalar n2 = (0.79/0.21)*o2;
|
|
scalar fres = max(1.0 - 1.0/equiv, 0.0);
|
|
scalar fburnt = 1.0 - fres;
|
|
|
|
// Initial guess for number of moles of product species
|
|
// ignoring product dissociation
|
|
scalar oresInit = max(1.0/equiv - 1.0, 0.0)*stoicO2;
|
|
scalar co2Init = fburnt*stoicCO2;
|
|
scalar h2oInit = fburnt*stoicH2O;
|
|
|
|
scalar ores = oresInit;
|
|
scalar co2 = co2Init;
|
|
scalar h2o = h2oInit;
|
|
|
|
scalar co = 0.0;
|
|
scalar h2 = 0.0;
|
|
|
|
// Total number of moles in system
|
|
scalar N = fres + n2 + co2 + h2o + ores;
|
|
|
|
|
|
// Initial guess for adiabatic flame temperature
|
|
scalar adiabaticFlameTemperature =
|
|
T0
|
|
+ (fburnt/(1.0 + o2 + n2))/(1.0/(1.0 + (1.0 + 0.79/0.21)*stoicO2))
|
|
*2000.0;
|
|
|
|
scalar equilibriumFlameTemperature = adiabaticFlameTemperature;
|
|
|
|
|
|
// Iteration loop for adiabatic flame temperature
|
|
for (int j=0; j<20; j++)
|
|
{
|
|
|
|
if (j > 0)
|
|
{
|
|
co = co2*
|
|
min
|
|
(
|
|
CO2BreakUp.Kn(equilibriumFlameTemperature, P, N)
|
|
/::sqrt(max(ores, 0.001)),
|
|
1.0
|
|
);
|
|
|
|
h2 = h2o*
|
|
min
|
|
(
|
|
H2OBreakUp.Kn(equilibriumFlameTemperature, P, N)
|
|
/::sqrt(max(ores, 0.001)),
|
|
1.0
|
|
);
|
|
|
|
co2 = co2Init - co;
|
|
h2o = h2oInit - h2;
|
|
ores = oresInit + 0.5*co + 0.5*h2;
|
|
}
|
|
|
|
thermo reactants
|
|
(
|
|
FUEL + o2*O2 + n2*N2
|
|
);
|
|
|
|
thermo products
|
|
(
|
|
fres*FUEL + ores*O2 + n2*N2
|
|
+ co2*CO2 + h2o*H2O + co*CO + h2*H2
|
|
);
|
|
|
|
|
|
scalar equilibriumFlameTemperatureNew =
|
|
products.TH(reactants.H(T0), adiabaticFlameTemperature);
|
|
|
|
if (j==0)
|
|
{
|
|
adiabaticFlameTemperature = equilibriumFlameTemperatureNew;
|
|
}
|
|
else
|
|
{
|
|
equilibriumFlameTemperature = 0.5*
|
|
(
|
|
equilibriumFlameTemperature
|
|
+ equilibriumFlameTemperatureNew
|
|
);
|
|
}
|
|
}
|
|
|
|
Info<< setw(3) << equiv
|
|
<< setw(12) << ft
|
|
<< setw(7) << T0
|
|
<< setw(12) << adiabaticFlameTemperature
|
|
<< setw(12) << equilibriumFlameTemperature
|
|
<< setw(12)
|
|
<< adiabaticFlameTemperature - equilibriumFlameTemperature
|
|
<< setw(12) << ores/N
|
|
<< endl;
|
|
}
|
|
}
|
|
|
|
Info<< nl << "end" << endl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|