313 lines
9 KiB
C++
313 lines
9 KiB
C++
/*
|
|
* Progressive Mesh type Polygon Reduction Algorithm
|
|
* by Stan Melax (c) 1998
|
|
* Permission to use any of this code wherever you want is granted..
|
|
* Although, please do acknowledge authorship if appropriate.
|
|
*
|
|
* See the header file progmesh.h for a description of this module
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
//#include <windows.h>
|
|
|
|
#include "vectorb.h"
|
|
#include "listb.h"
|
|
#include "progmesh.h"
|
|
|
|
#define min(x,y) (((x) <= (y)) ? (x) : (y))
|
|
#define max(x,y) (((x) >= (y)) ? (x) : (y))
|
|
|
|
|
|
/*
|
|
* For the polygon reduction algorithm we use data structures
|
|
* that contain a little bit more information than the usual
|
|
* indexed face set type of data structure.
|
|
* From a vertex we wish to be able to quickly get the
|
|
* neighboring faces and vertices.
|
|
*/
|
|
class Triangle;
|
|
class Vertex;
|
|
|
|
class Triangle {
|
|
public:
|
|
Vertex * vertex[3]; // the 3 points that make this tri
|
|
Vector normal; // unit vector othogonal to this face
|
|
Triangle(Vertex *v0,Vertex *v1,Vertex *v2);
|
|
~Triangle();
|
|
void ComputeNormal();
|
|
void ReplaceVertex(Vertex *vold,Vertex *vnew);
|
|
int HasVertex(Vertex *v);
|
|
};
|
|
class Vertex {
|
|
public:
|
|
Vector position; // location of point in euclidean space
|
|
int id; // place of vertex in original list
|
|
List<Vertex *> neighbor; // adjacent vertices
|
|
List<Triangle *> face; // adjacent triangles
|
|
float objdist; // cached cost of collapsing edge
|
|
Vertex * collapse; // candidate vertex for collapse
|
|
Vertex(Vector v,int _id);
|
|
~Vertex();
|
|
void RemoveIfNonNeighbor(Vertex *n);
|
|
};
|
|
List<Vertex *> vertices;
|
|
List<Triangle *> triangles;
|
|
|
|
|
|
Triangle::Triangle(Vertex *v0,Vertex *v1,Vertex *v2){
|
|
assert(v0!=v1 && v1!=v2 && v2!=v0);
|
|
vertex[0]=v0;
|
|
vertex[1]=v1;
|
|
vertex[2]=v2;
|
|
ComputeNormal();
|
|
triangles.Add(this);
|
|
for(int i=0;i<3;i++) {
|
|
vertex[i]->face.Add(this);
|
|
for(int j=0;j<3;j++) if(i!=j) {
|
|
vertex[i]->neighbor.AddUnique(vertex[j]);
|
|
}
|
|
}
|
|
}
|
|
Triangle::~Triangle(){
|
|
int i;
|
|
triangles.Remove(this);
|
|
for(i=0;i<3;i++) {
|
|
if(vertex[i]) vertex[i]->face.Remove(this);
|
|
}
|
|
for(i=0;i<3;i++) {
|
|
int i2 = (i+1)%3;
|
|
if(!vertex[i] || !vertex[i2]) continue;
|
|
vertex[i ]->RemoveIfNonNeighbor(vertex[i2]);
|
|
vertex[i2]->RemoveIfNonNeighbor(vertex[i ]);
|
|
}
|
|
}
|
|
int Triangle::HasVertex(Vertex *v) {
|
|
return (v==vertex[0] ||v==vertex[1] || v==vertex[2]);
|
|
}
|
|
void Triangle::ComputeNormal(){
|
|
Vector v0=vertex[0]->position;
|
|
Vector v1=vertex[1]->position;
|
|
Vector v2=vertex[2]->position;
|
|
normal = (v1-v0)*(v2-v1);
|
|
if(magnitude(normal)==0)return;
|
|
normal = normalize(normal);
|
|
}
|
|
void Triangle::ReplaceVertex(Vertex *vold,Vertex *vnew) {
|
|
assert(vold && vnew);
|
|
assert(vold==vertex[0] || vold==vertex[1] || vold==vertex[2]);
|
|
assert(vnew!=vertex[0] && vnew!=vertex[1] && vnew!=vertex[2]);
|
|
if(vold==vertex[0]){
|
|
vertex[0]=vnew;
|
|
}
|
|
else if(vold==vertex[1]){
|
|
vertex[1]=vnew;
|
|
}
|
|
else {
|
|
assert(vold==vertex[2]);
|
|
vertex[2]=vnew;
|
|
}
|
|
int i;
|
|
vold->face.Remove(this);
|
|
assert(!vnew->face.Contains(this));
|
|
vnew->face.Add(this);
|
|
for(i=0;i<3;i++) {
|
|
vold->RemoveIfNonNeighbor(vertex[i]);
|
|
vertex[i]->RemoveIfNonNeighbor(vold);
|
|
}
|
|
for(i=0;i<3;i++) {
|
|
assert(vertex[i]->face.Contains(this)==1);
|
|
for(int j=0;j<3;j++) if(i!=j) {
|
|
vertex[i]->neighbor.AddUnique(vertex[j]);
|
|
}
|
|
}
|
|
ComputeNormal();
|
|
}
|
|
|
|
Vertex::Vertex(Vector v,int _id) {
|
|
position =v;
|
|
id=_id;
|
|
vertices.Add(this);
|
|
}
|
|
|
|
Vertex::~Vertex(){
|
|
assert(face.num==0);
|
|
while(neighbor.num) {
|
|
neighbor[0]->neighbor.Remove(this);
|
|
neighbor.Remove(neighbor[0]);
|
|
}
|
|
vertices.Remove(this);
|
|
}
|
|
void Vertex::RemoveIfNonNeighbor(Vertex *n) {
|
|
// removes n from neighbor list if n isn't a neighbor.
|
|
if(!neighbor.Contains(n)) return;
|
|
for(int i=0;i<face.num;i++) {
|
|
if(face[i]->HasVertex(n)) return;
|
|
}
|
|
neighbor.Remove(n);
|
|
}
|
|
|
|
|
|
float ComputeEdgeCollapseCost(Vertex *u,Vertex *v) {
|
|
// if we collapse edge uv by moving u to v then how
|
|
// much different will the model change, i.e. how much "error".
|
|
// Texture, vertex normal, and border vertex code was removed
|
|
// to keep this demo as simple as possible.
|
|
// The method of determining cost was designed in order
|
|
// to exploit small and coplanar regions for
|
|
// effective polygon reduction.
|
|
// Is is possible to add some checks here to see if "folds"
|
|
// would be generated. i.e. normal of a remaining face gets
|
|
// flipped. I never seemed to run into this problem and
|
|
// therefore never added code to detect this case.
|
|
int i;
|
|
float edgelength = magnitude(v->position - u->position);
|
|
float curvature=0;
|
|
|
|
// find the "sides" triangles that are on the edge uv
|
|
List<Triangle *> sides;
|
|
for(i=0;i<u->face.num;i++) {
|
|
if(u->face[i]->HasVertex(v)){
|
|
sides.Add(u->face[i]);
|
|
}
|
|
}
|
|
// use the triangle facing most away from the sides
|
|
// to determine our curvature term
|
|
for(i=0;i<u->face.num;i++) {
|
|
float mincurv=1; // curve for face i and closer side to it
|
|
for(int j=0;j<sides.num;j++) {
|
|
// use dot product of face normals. '^' defined in vector
|
|
float dotprod = u->face[i]->normal ^ sides[j]->normal;
|
|
mincurv = min(mincurv,(1-dotprod)/2.0f);
|
|
}
|
|
curvature = max(curvature,mincurv);
|
|
}
|
|
// the more coplanar the lower the curvature term
|
|
return edgelength * curvature;
|
|
}
|
|
|
|
void ComputeEdgeCostAtVertex(Vertex *v) {
|
|
// compute the edge collapse cost for all edges that start
|
|
// from vertex v. Since we are only interested in reducing
|
|
// the object by selecting the min cost edge at each step, we
|
|
// only cache the cost of the least cost edge at this vertex
|
|
// (in member variable collapse) as well as the value of the
|
|
// cost (in member variable objdist).
|
|
if(v->neighbor.num==0) {
|
|
// v doesn't have neighbors so it costs nothing to collapse
|
|
v->collapse=nullptr;
|
|
v->objdist=-0.01f;
|
|
return;
|
|
}
|
|
v->objdist = 1000000;
|
|
v->collapse=nullptr;
|
|
// search all neighboring edges for "least cost" edge
|
|
for(int i=0;i<v->neighbor.num;i++) {
|
|
float dist;
|
|
dist = ComputeEdgeCollapseCost(v,v->neighbor[i]);
|
|
if(dist<v->objdist) {
|
|
v->collapse=v->neighbor[i]; // candidate for edge collapse
|
|
v->objdist=dist; // cost of the collapse
|
|
}
|
|
}
|
|
}
|
|
void ComputeAllEdgeCollapseCosts() {
|
|
// For all the edges, compute the difference it would make
|
|
// to the model if it was collapsed. The least of these
|
|
// per vertex is cached in each vertex object.
|
|
for(int i=0;i<vertices.num;i++) {
|
|
ComputeEdgeCostAtVertex(vertices[i]);
|
|
}
|
|
}
|
|
|
|
void Collapse(Vertex *u,Vertex *v){
|
|
// Collapse the edge uv by moving vertex u onto v
|
|
// Actually remove tris on uv, then update tris that
|
|
// have u to have v, and then remove u.
|
|
if(!v) {
|
|
// u is a vertex all by itself so just delete it
|
|
delete u;
|
|
return;
|
|
}
|
|
int i;
|
|
List<Vertex *>tmp;
|
|
// make tmp a list of all the neighbors of u
|
|
for(i=0;i<u->neighbor.num;i++) {
|
|
tmp.Add(u->neighbor[i]);
|
|
}
|
|
// delete triangles on edge uv:
|
|
for(i=u->face.num-1;i>=0;i--) {
|
|
if(u->face[i]->HasVertex(v)) {
|
|
delete(u->face[i]);
|
|
}
|
|
}
|
|
// update remaining triangles to have v instead of u
|
|
for(i=u->face.num-1;i>=0;i--) {
|
|
u->face[i]->ReplaceVertex(u,v);
|
|
}
|
|
delete u;
|
|
// recompute the edge collapse costs for neighboring vertices
|
|
for(i=0;i<tmp.num;i++) {
|
|
ComputeEdgeCostAtVertex(tmp[i]);
|
|
}
|
|
}
|
|
|
|
void AddVertex(List<Vector> &vert){
|
|
for(int i=0;i<vert.num;i++) {
|
|
new Vertex(vert[i],i);
|
|
}
|
|
}
|
|
void AddFaces(List<tridata> &tri){
|
|
for(int i=0;i<tri.num;i++) {
|
|
new Triangle(
|
|
vertices[tri[i].v[0]],
|
|
vertices[tri[i].v[1]],
|
|
vertices[tri[i].v[2]] );
|
|
}
|
|
}
|
|
|
|
Vertex *MinimumCostEdge(){
|
|
// Find the edge that when collapsed will affect model the least.
|
|
// This funtion actually returns a Vertex, the second vertex
|
|
// of the edge (collapse candidate) is stored in the vertex data.
|
|
// Serious optimization opportunity here: this function currently
|
|
// does a sequential search through an unsorted list :-(
|
|
// Our algorithm could be O(n*lg(n)) instead of O(n*n)
|
|
Vertex *mn=vertices[0];
|
|
for(int i=0;i<vertices.num;i++) {
|
|
if(vertices[i]->objdist < mn->objdist) {
|
|
mn = vertices[i];
|
|
}
|
|
}
|
|
return mn;
|
|
}
|
|
|
|
void ProgressiveMesh(List<Vector> &vert, List<tridata> &tri,
|
|
List<int> &map, List<int> &permutation)
|
|
{
|
|
AddVertex(vert); // put input data into our data structures
|
|
AddFaces(tri);
|
|
ComputeAllEdgeCollapseCosts(); // cache all edge collapse costs
|
|
permutation.SetSize(vertices.num); // allocate space
|
|
map.SetSize(vertices.num); // allocate space
|
|
// reduce the object down to nothing:
|
|
while(vertices.num > 0) {
|
|
// get the next vertex to collapse
|
|
Vertex *mn = MinimumCostEdge();
|
|
// keep track of this vertex, i.e. the collapse ordering
|
|
permutation[mn->id]=vertices.num-1;
|
|
// keep track of vertex to which we collapse to
|
|
map[vertices.num-1] = (mn->collapse)?mn->collapse->id:-1;
|
|
// Collapse this edge
|
|
Collapse(mn,mn->collapse);
|
|
}
|
|
// reorder the map list based on the collapse ordering
|
|
for(int i=0;i<map.num;i++) {
|
|
map[i] = (map[i]==-1)?0:permutation[map[i]];
|
|
}
|
|
// The caller of this function should reorder their vertices
|
|
// according to the returned "permutation".
|
|
}
|
|
|