981 lines
25 KiB
C++
981 lines
25 KiB
C++
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | foam-extend: Open Source CFD
|
|
\\ / O peration | Version: 4.1
|
|
\\ / A nd | Web: http://www.foam-extend.org
|
|
\\/ M anipulation | For copyright notice see file Copyright
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of foam-extend.
|
|
|
|
foam-extend is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation, either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
foam-extend is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Description
|
|
Takes multiply connected surface and tries to split surface at
|
|
multiply connected edges by duplicating points. Introduces concept of
|
|
- borderEdge. Edge with 4 faces connected to it.
|
|
- borderPoint. Point connected to exactly 2 borderEdges.
|
|
- borderLine. Connected list of borderEdges.
|
|
|
|
By duplicating borderPoints this will split 'borderLines'. As a
|
|
preprocessing step it can detect borderEdges without any borderPoints
|
|
and explicitly split these triangles.
|
|
|
|
The problems in this algorithm are:
|
|
- determining which two (of the four) faces form a surface. Done by walking
|
|
face-edge-face while keeping and edge or point on the borderEdge
|
|
borderPoint.
|
|
- determining the outwards pointing normal to be used to slightly offset the
|
|
duplicated point.
|
|
|
|
Uses sortedEdgeFaces quite a bit.
|
|
|
|
Is tested on simple borderLines resulting from extracting a surface
|
|
from a hex mesh. Will quite possibly go wrong on more complicated border
|
|
lines (i.e. ones forming a loop).
|
|
|
|
Dumps surface every so often since might take a long time to complete.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "argList.H"
|
|
#include "triSurface.H"
|
|
#include "OFstream.H"
|
|
#include "ListOps.H"
|
|
#include "triSurfaceTools.H"
|
|
|
|
using namespace Foam;
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
void writeOBJ(Ostream& os, const pointField& pts)
|
|
{
|
|
forAll(pts, i)
|
|
{
|
|
const point& pt = pts[i];
|
|
|
|
os << "v " << pt.x() << ' ' << pt.y() << ' ' << pt.z() << endl;
|
|
}
|
|
}
|
|
|
|
|
|
void dumpPoints(const triSurface& surf, const labelList& borderPoint)
|
|
{
|
|
fileName fName("borderPoints.obj");
|
|
|
|
Info<< "Dumping borderPoints as Lightwave .obj file to " << fName
|
|
<< "\nThis can be visualized with e.g. javaview (www.javaview.de)\n\n";
|
|
|
|
OFstream os(fName);
|
|
|
|
forAll(borderPoint, pointI)
|
|
{
|
|
if (borderPoint[pointI] != -1)
|
|
{
|
|
const point& pt = surf.localPoints()[pointI];
|
|
|
|
os << "v " << pt.x() << ' ' << pt.y() << ' ' << pt.z() << endl;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void dumpEdges(const triSurface& surf, const boolList& borderEdge)
|
|
{
|
|
fileName fName("borderEdges.obj");
|
|
|
|
Info<< "Dumping borderEdges as Lightwave .obj file to " << fName
|
|
<< "\nThis can be visualized with e.g. javaview (www.javaview.de)\n\n";
|
|
|
|
OFstream os(fName);
|
|
|
|
writeOBJ(os, surf.localPoints());
|
|
|
|
forAll(borderEdge, edgeI)
|
|
{
|
|
if (borderEdge[edgeI])
|
|
{
|
|
const edge& e = surf.edges()[edgeI];
|
|
|
|
os << "l " << e.start()+1 << ' ' << e.end()+1 << endl;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void dumpFaces
|
|
(
|
|
const fileName& fName,
|
|
const triSurface& surf,
|
|
const Map<label>& connectedFaces
|
|
)
|
|
{
|
|
Info<< "Dumping connectedFaces as Lightwave .obj file to " << fName
|
|
<< "\nThis can be visualized with e.g. javaview (www.javaview.de)\n\n";
|
|
|
|
OFstream os(fName);
|
|
|
|
for
|
|
(
|
|
Map<label>::const_iterator iter = connectedFaces.begin();
|
|
iter != connectedFaces.end();
|
|
++iter
|
|
)
|
|
{
|
|
const labelledTri& f = surf.localFaces()[iter.key()];
|
|
|
|
point ctr(f.centre(surf.localPoints()));
|
|
|
|
os << "v " << ctr.x() << ' ' << ctr.y() << ' ' << ctr.z() << endl;
|
|
}
|
|
}
|
|
|
|
|
|
void testSortedEdgeFaces(const triSurface& surf)
|
|
{
|
|
const labelListList& edgeFaces = surf.edgeFaces();
|
|
const labelListList& sortedEdgeFaces = surf.sortedEdgeFaces();
|
|
|
|
forAll(edgeFaces, edgeI)
|
|
{
|
|
const labelList& myFaces = edgeFaces[edgeI];
|
|
const labelList& sortMyFaces = sortedEdgeFaces[edgeI];
|
|
|
|
forAll(myFaces, i)
|
|
{
|
|
if (findIndex(sortMyFaces, myFaces[i]) == -1)
|
|
{
|
|
FatalErrorIn("testSortedEdgeFaces(..)") << abort(FatalError);
|
|
}
|
|
}
|
|
forAll(sortMyFaces, i)
|
|
{
|
|
if (findIndex(myFaces, sortMyFaces[i]) == -1)
|
|
{
|
|
FatalErrorIn("testSortedEdgeFaces(..)") << abort(FatalError);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Mark off all border edges. Return number of border edges.
|
|
label markBorderEdges
|
|
(
|
|
const bool debug,
|
|
const triSurface& surf,
|
|
boolList& borderEdge
|
|
)
|
|
{
|
|
label nBorderEdges = 0;
|
|
|
|
const labelListList& edgeFaces = surf.edgeFaces();
|
|
|
|
forAll(edgeFaces, edgeI)
|
|
{
|
|
if (edgeFaces[edgeI].size() == 4)
|
|
{
|
|
borderEdge[edgeI] = true;
|
|
|
|
nBorderEdges++;
|
|
}
|
|
}
|
|
|
|
if (debug)
|
|
{
|
|
dumpEdges(surf, borderEdge);
|
|
}
|
|
|
|
return nBorderEdges;
|
|
}
|
|
|
|
|
|
// Mark off all border points. Return number of border points. Border points
|
|
// marked by setting value to newly introduced point.
|
|
label markBorderPoints
|
|
(
|
|
const bool debug,
|
|
const triSurface& surf,
|
|
const boolList& borderEdge,
|
|
labelList& borderPoint
|
|
)
|
|
{
|
|
label nPoints = surf.nPoints();
|
|
|
|
const labelListList& pointEdges = surf.pointEdges();
|
|
|
|
forAll(pointEdges, pointI)
|
|
{
|
|
const labelList& pEdges = pointEdges[pointI];
|
|
|
|
label nBorderEdges = 0;
|
|
|
|
forAll(pEdges, i)
|
|
{
|
|
if (borderEdge[pEdges[i]])
|
|
{
|
|
nBorderEdges++;
|
|
}
|
|
}
|
|
|
|
if (nBorderEdges == 2 && borderPoint[pointI] == -1)
|
|
{
|
|
borderPoint[pointI] = nPoints++;
|
|
}
|
|
}
|
|
|
|
label nBorderPoints = nPoints - surf.nPoints();
|
|
|
|
if (debug)
|
|
{
|
|
dumpPoints(surf, borderPoint);
|
|
}
|
|
|
|
return nBorderPoints;
|
|
}
|
|
|
|
|
|
// Get minumum length of edges connected to pointI
|
|
// Serves to get some local length scale.
|
|
scalar minEdgeLen(const triSurface& surf, const label pointI)
|
|
{
|
|
const pointField& points = surf.localPoints();
|
|
|
|
const labelList& pEdges = surf.pointEdges()[pointI];
|
|
|
|
scalar minLen = GREAT;
|
|
|
|
forAll(pEdges, i)
|
|
{
|
|
label edgeI = pEdges[i];
|
|
|
|
scalar len = surf.edges()[edgeI].mag(points);
|
|
|
|
if (len < minLen)
|
|
{
|
|
minLen = len;
|
|
}
|
|
}
|
|
return minLen;
|
|
}
|
|
|
|
|
|
// Find edge among edgeLabels with endpoints v0,v1
|
|
label findEdge
|
|
(
|
|
const triSurface& surf,
|
|
const labelList& edgeLabels,
|
|
const label v0,
|
|
const label v1
|
|
)
|
|
{
|
|
forAll(edgeLabels, i)
|
|
{
|
|
label edgeI = edgeLabels[i];
|
|
|
|
const edge& e = surf.edges()[edgeI];
|
|
|
|
if
|
|
(
|
|
(
|
|
e.start() == v0
|
|
&& e.end() == v1
|
|
)
|
|
|| (
|
|
e.start() == v1
|
|
&& e.end() == v0
|
|
)
|
|
)
|
|
{
|
|
return edgeI;
|
|
}
|
|
}
|
|
|
|
|
|
FatalErrorIn("findEdge(..)") << "Cannot find edge with labels " << v0
|
|
<< ' ' << v1 << " in candidates " << edgeLabels
|
|
<< " with vertices:" << UIndirectList<edge>(surf.edges(), edgeLabels)()
|
|
<< abort(FatalError);
|
|
|
|
return -1;
|
|
}
|
|
|
|
|
|
// Get the other edge connected to pointI on faceI.
|
|
label otherEdge
|
|
(
|
|
const triSurface& surf,
|
|
const label faceI,
|
|
const label otherEdgeI,
|
|
const label pointI
|
|
)
|
|
{
|
|
const labelList& fEdges = surf.faceEdges()[faceI];
|
|
|
|
forAll(fEdges, i)
|
|
{
|
|
label edgeI = fEdges[i];
|
|
|
|
const edge& e = surf.edges()[edgeI];
|
|
|
|
if
|
|
(
|
|
edgeI != otherEdgeI
|
|
&& (
|
|
e.start() == pointI
|
|
|| e.end() == pointI
|
|
)
|
|
)
|
|
{
|
|
return edgeI;
|
|
}
|
|
}
|
|
|
|
FatalErrorIn("otherEdge(..)") << "Cannot find other edge on face " << faceI
|
|
<< " verts:" << surf.localPoints()[faceI]
|
|
<< " connected to point " << pointI
|
|
<< " faceEdges:" << UIndirectList<edge>(surf.edges(), fEdges)()
|
|
<< abort(FatalError);
|
|
|
|
return -1;
|
|
}
|
|
|
|
|
|
// Starting from startPoint on startEdge on startFace walk along border
|
|
// and insert faces along the way. Walk keeps always one point or one edge
|
|
// on the border line.
|
|
void walkSplitLine
|
|
(
|
|
const triSurface& surf,
|
|
const boolList& borderEdge,
|
|
const labelList& borderPoint,
|
|
|
|
const label startFaceI,
|
|
const label startEdgeI, // is border edge
|
|
const label startPointI, // is border point
|
|
|
|
Map<label>& faceToEdge,
|
|
Map<label>& faceToPoint
|
|
)
|
|
{
|
|
label faceI = startFaceI;
|
|
label edgeI = startEdgeI;
|
|
label pointI = startPointI;
|
|
|
|
do
|
|
{
|
|
//
|
|
// Stick to pointI and walk face-edge-face until back on border edge.
|
|
//
|
|
|
|
do
|
|
{
|
|
// Cross face to next edge.
|
|
edgeI = otherEdge(surf, faceI, edgeI, pointI);
|
|
|
|
if (borderEdge[edgeI])
|
|
{
|
|
if (!faceToEdge.insert(faceI, edgeI))
|
|
{
|
|
// Was already visited.
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
// First visit to this borderEdge. We're back on borderline.
|
|
break;
|
|
}
|
|
}
|
|
else if (!faceToPoint.insert(faceI, pointI))
|
|
{
|
|
// Was already visited.
|
|
return;
|
|
}
|
|
|
|
// Cross edge to other face
|
|
const labelList& eFaces = surf.edgeFaces()[edgeI];
|
|
|
|
if (eFaces.size() != 2)
|
|
{
|
|
FatalErrorIn("walkSplitPoint(..)")
|
|
<< "Can only handle edges with 2 or 4 edges for now."
|
|
<< abort(FatalError);
|
|
}
|
|
|
|
if (eFaces[0] == faceI)
|
|
{
|
|
faceI = eFaces[1];
|
|
}
|
|
else if (eFaces[1] == faceI)
|
|
{
|
|
faceI = eFaces[0];
|
|
}
|
|
else
|
|
{
|
|
FatalErrorIn("walkSplitPoint(..)") << abort(FatalError);
|
|
}
|
|
}
|
|
while (true);
|
|
|
|
|
|
//
|
|
// Back on border edge. Cross to other point on edge.
|
|
//
|
|
|
|
pointI = surf.edges()[edgeI].otherVertex(pointI);
|
|
|
|
if (borderPoint[pointI] == -1)
|
|
{
|
|
return;
|
|
}
|
|
|
|
}
|
|
while (true);
|
|
}
|
|
|
|
|
|
// Find second face which is from same surface i.e. has points on the
|
|
// shared edge in reverse order.
|
|
label sharedFace
|
|
(
|
|
const triSurface& surf,
|
|
const label firstFaceI,
|
|
const label sharedEdgeI
|
|
)
|
|
{
|
|
// Find ordering of face points in edge.
|
|
|
|
const edge& e = surf.edges()[sharedEdgeI];
|
|
|
|
const labelledTri& f = surf.localFaces()[firstFaceI];
|
|
|
|
label startIndex = findIndex(f, e.start());
|
|
|
|
// points in face in same order as edge
|
|
bool edgeOrder = (f[f.fcIndex(startIndex)] == e.end());
|
|
|
|
// Get faces using edge in sorted order. (sorted such that walking
|
|
// around them in anti-clockwise order corresponds to edge vector
|
|
// acc. to right-hand rule)
|
|
const labelList& eFaces = surf.sortedEdgeFaces()[sharedEdgeI];
|
|
|
|
// Get position of face in sorted edge faces
|
|
label faceIndex = findIndex(eFaces, firstFaceI);
|
|
|
|
if (edgeOrder)
|
|
{
|
|
// Get face before firstFaceI
|
|
return eFaces[eFaces.rcIndex(faceIndex)];
|
|
}
|
|
else
|
|
{
|
|
// Get face after firstFaceI
|
|
return eFaces[eFaces.fcIndex(faceIndex)];
|
|
}
|
|
}
|
|
|
|
|
|
// Calculate (inward pointing) normals on edges shared by faces in faceToEdge and
|
|
// averages them to pointNormals.
|
|
void calcPointVecs
|
|
(
|
|
const triSurface& surf,
|
|
const Map<label>& faceToEdge,
|
|
const Map<label>& faceToPoint,
|
|
vectorField& borderPointVec
|
|
)
|
|
{
|
|
const labelListList& sortedEdgeFaces = surf.sortedEdgeFaces();
|
|
const edgeList& edges = surf.edges();
|
|
const pointField& points = surf.localPoints();
|
|
|
|
boolList edgeDone(surf.nEdges(), false);
|
|
|
|
for
|
|
(
|
|
Map<label>::const_iterator iter = faceToEdge.begin();
|
|
iter != faceToEdge.end();
|
|
++iter
|
|
)
|
|
{
|
|
label edgeI = iter();
|
|
|
|
if (!edgeDone[edgeI])
|
|
{
|
|
edgeDone[edgeI] = true;
|
|
|
|
// Get the two connected faces in sorted order
|
|
// Note: should have stored this when walking ...
|
|
|
|
label face0I = -1;
|
|
label face1I = -1;
|
|
|
|
const labelList& eFaces = sortedEdgeFaces[edgeI];
|
|
|
|
forAll(eFaces, i)
|
|
{
|
|
label faceI = eFaces[i];
|
|
|
|
if (faceToEdge.found(faceI))
|
|
{
|
|
if (face0I == -1)
|
|
{
|
|
face0I = faceI;
|
|
}
|
|
else if (face1I == -1)
|
|
{
|
|
face1I = faceI;
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (face0I == -1 && face1I == -1)
|
|
{
|
|
Info<< "Writing surface to errorSurf.ftr" << endl;
|
|
|
|
surf.write("errorSurf.ftr");
|
|
|
|
FatalErrorIn("calcPointVecs(..)")
|
|
<< "Cannot find two faces using border edge " << edgeI
|
|
<< " verts:" << edges[edgeI]
|
|
<< " eFaces:" << eFaces << endl
|
|
<< "face0I:" << face0I
|
|
<< " face1I:" << face1I << nl
|
|
<< "faceToEdge:" << faceToEdge << nl
|
|
<< "faceToPoint:" << faceToPoint
|
|
<< "Written surface to errorSurf.ftr"
|
|
<< abort(FatalError);
|
|
}
|
|
|
|
// Now we have edge and the two faces in counter-clockwise order
|
|
// as seen from edge vector. Calculate normal.
|
|
const edge& e = edges[edgeI];
|
|
vector eVec = e.vec(points);
|
|
|
|
// Determine vector as average of the vectors in the two faces.
|
|
// If there is only one face available use only one vector.
|
|
vector midVec(vector::zero);
|
|
|
|
if (face0I != -1)
|
|
{
|
|
label v0 = triSurfaceTools::oppositeVertex(surf, face0I, edgeI);
|
|
vector e0 = (points[v0] - points[e.start()]) ^ eVec;
|
|
e0 /= mag(e0);
|
|
midVec = e0;
|
|
}
|
|
|
|
if (face1I != -1)
|
|
{
|
|
label v1 = triSurfaceTools::oppositeVertex(surf, face1I, edgeI);
|
|
vector e1 = (points[e.start()] - points[v1]) ^ eVec;
|
|
e1 /= mag(e1);
|
|
midVec += e1;
|
|
}
|
|
|
|
scalar magMidVec = mag(midVec);
|
|
|
|
if (magMidVec > SMALL)
|
|
{
|
|
midVec /= magMidVec;
|
|
|
|
// Average to pointVec
|
|
borderPointVec[e.start()] += midVec;
|
|
borderPointVec[e.end()] += midVec;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Renumbers vertices (of triangles in faceToEdge) of which the pointMap is
|
|
// not -1.
|
|
void renumberFaces
|
|
(
|
|
const triSurface& surf,
|
|
const labelList& pointMap,
|
|
const Map<label>& faceToEdge,
|
|
List<labelledTri>& newTris
|
|
)
|
|
{
|
|
for
|
|
(
|
|
Map<label>::const_iterator iter = faceToEdge.begin();
|
|
iter != faceToEdge.end();
|
|
++iter
|
|
)
|
|
{
|
|
label faceI = iter.key();
|
|
|
|
const labelledTri& f = surf.localFaces()[faceI];
|
|
|
|
forAll(f, fp)
|
|
{
|
|
if (pointMap[f[fp]] != -1)
|
|
{
|
|
newTris[faceI][fp] = pointMap[f[fp]];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Split all borderEdges that don't have borderPoint. Return true if split
|
|
// anything.
|
|
bool splitBorderEdges
|
|
(
|
|
triSurface& surf,
|
|
const boolList& borderEdge,
|
|
const labelList& borderPoint
|
|
)
|
|
{
|
|
labelList edgesToBeSplit(surf.nEdges());
|
|
label nSplit = 0;
|
|
|
|
forAll(borderEdge, edgeI)
|
|
{
|
|
if (borderEdge[edgeI])
|
|
{
|
|
const edge& e = surf.edges()[edgeI];
|
|
|
|
if (borderPoint[e.start()] == -1 && borderPoint[e.end()] == -1)
|
|
{
|
|
// None of the points of the edge is borderPoint. Split edge
|
|
// to introduce border point.
|
|
edgesToBeSplit[nSplit++] = edgeI;
|
|
}
|
|
}
|
|
}
|
|
edgesToBeSplit.setSize(nSplit);
|
|
|
|
if (nSplit > 0)
|
|
{
|
|
Info<< "Splitting surface along " << nSplit << " borderEdges that don't"
|
|
<< " neighbour other borderEdges" << nl << endl;
|
|
|
|
surf = triSurfaceTools::greenRefine(surf, edgesToBeSplit);
|
|
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
Info<< "No edges to be split" <<nl << endl;
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
// Main program:
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
argList::noParallel();
|
|
argList::validArgs.clear();
|
|
|
|
argList::validArgs.append("surface file");
|
|
argList::validArgs.append("output surface file");
|
|
argList::validOptions.insert("debug", "");
|
|
|
|
argList args(argc, argv);
|
|
|
|
fileName inSurfName(args.additionalArgs()[0]);
|
|
fileName outSurfName(args.additionalArgs()[1]);
|
|
bool debug = args.optionFound("debug");
|
|
|
|
|
|
Info<< "Reading surface from " << inSurfName << endl;
|
|
|
|
triSurface surf(inSurfName);
|
|
|
|
// Make sure sortedEdgeFaces is calculated correctly
|
|
testSortedEdgeFaces(surf);
|
|
|
|
// Get all quad connected edges. These are seen as borders when walking.
|
|
boolList borderEdge(surf.nEdges(), false);
|
|
markBorderEdges(debug, surf, borderEdge);
|
|
|
|
// Points on two sides connected to borderEdges are called borderPoints and
|
|
// will be duplicated. borderPoint contains label of newly introduced vertex.
|
|
labelList borderPoint(surf.nPoints(), -1);
|
|
markBorderPoints(debug, surf, borderEdge, borderPoint);
|
|
|
|
// Split edges where there would be no borderPoint to duplicate.
|
|
splitBorderEdges(surf, borderEdge, borderPoint);
|
|
|
|
|
|
Info<< "Writing split surface to " << outSurfName << nl << endl;
|
|
surf.write(outSurfName);
|
|
Info<< "Finished writing surface to " << outSurfName << nl << endl;
|
|
|
|
|
|
// Last iteration values.
|
|
label nOldBorderEdges = -1;
|
|
label nOldBorderPoints = -1;
|
|
|
|
label iteration = 0;
|
|
|
|
do
|
|
{
|
|
// Redo borderEdge/borderPoint calculation.
|
|
boolList borderEdge(surf.nEdges(), false);
|
|
|
|
label nBorderEdges = markBorderEdges(debug, surf, borderEdge);
|
|
|
|
if (nBorderEdges == 0)
|
|
{
|
|
Info<< "Found no border edges. Exiting." << nl << nl;
|
|
|
|
break;
|
|
}
|
|
|
|
// Label of newly introduced duplicate.
|
|
labelList borderPoint(surf.nPoints(), -1);
|
|
|
|
label nBorderPoints =
|
|
markBorderPoints
|
|
(
|
|
debug,
|
|
surf,
|
|
borderEdge,
|
|
borderPoint
|
|
);
|
|
|
|
if (nBorderPoints == 0)
|
|
{
|
|
Info<< "Found no border points. Exiting." << nl << nl;
|
|
|
|
break;
|
|
}
|
|
|
|
Info<< "Found:\n"
|
|
<< " border edges :" << nBorderEdges << nl
|
|
<< " border points:" << nBorderPoints << nl
|
|
<< endl;
|
|
|
|
if
|
|
(
|
|
nBorderPoints == nOldBorderPoints
|
|
&& nBorderEdges == nOldBorderEdges
|
|
)
|
|
{
|
|
Info<< "Stopping since number of border edges and point is same"
|
|
<< " as in previous iteration" << nl << endl;
|
|
|
|
break;
|
|
}
|
|
|
|
//
|
|
// Define splitLine as a series of connected borderEdges. Find start
|
|
// of one (as edge and point on edge)
|
|
//
|
|
|
|
label startEdgeI = -1;
|
|
label startPointI = -1;
|
|
|
|
forAll(borderEdge, edgeI)
|
|
{
|
|
if (borderEdge[edgeI])
|
|
{
|
|
const edge& e = surf.edges()[edgeI];
|
|
|
|
if ((borderPoint[e[0]] != -1) && (borderPoint[e[1]] == -1))
|
|
{
|
|
startEdgeI = edgeI;
|
|
startPointI = e[0];
|
|
|
|
break;
|
|
}
|
|
else if ((borderPoint[e[0]] == -1) && (borderPoint[e[1]] != -1))
|
|
{
|
|
startEdgeI = edgeI;
|
|
startPointI = e[1];
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (startEdgeI == -1)
|
|
{
|
|
Info<< "Cannot find starting point of splitLine\n" << endl;
|
|
|
|
break;
|
|
}
|
|
|
|
// Pick any face using edge to start from.
|
|
const labelList& eFaces = surf.edgeFaces()[startEdgeI];
|
|
|
|
label firstFaceI = eFaces[0];
|
|
|
|
// Find second face which is from same surface i.e. has outwards
|
|
// pointing normal as well (actually bit more complex than this)
|
|
label secondFaceI = sharedFace(surf, firstFaceI, startEdgeI);
|
|
|
|
Info<< "Starting local walk from:" << endl
|
|
<< " edge :" << startEdgeI << endl
|
|
<< " point:" << startPointI << endl
|
|
<< " face0:" << firstFaceI << endl
|
|
<< " face1:" << secondFaceI << endl
|
|
<< endl;
|
|
|
|
// From face on border edge to edge.
|
|
Map<label> faceToEdge(2*nBorderEdges);
|
|
// From face connected to border point (but not border edge) to point.
|
|
Map<label> faceToPoint(2*nBorderPoints);
|
|
|
|
faceToEdge.insert(firstFaceI, startEdgeI);
|
|
|
|
walkSplitLine
|
|
(
|
|
surf,
|
|
borderEdge,
|
|
borderPoint,
|
|
|
|
firstFaceI,
|
|
startEdgeI,
|
|
startPointI,
|
|
|
|
faceToEdge,
|
|
faceToPoint
|
|
);
|
|
|
|
faceToEdge.insert(secondFaceI, startEdgeI);
|
|
|
|
walkSplitLine
|
|
(
|
|
surf,
|
|
borderEdge,
|
|
borderPoint,
|
|
|
|
secondFaceI,
|
|
startEdgeI,
|
|
startPointI,
|
|
|
|
faceToEdge,
|
|
faceToPoint
|
|
);
|
|
|
|
Info<< "Finished local walk and visited" << nl
|
|
<< " border edges :" << faceToEdge.size() << nl
|
|
<< " border points(but not edges):" << faceToPoint.size() << nl
|
|
<< endl;
|
|
|
|
if (debug)
|
|
{
|
|
dumpFaces("faceToEdge.obj", surf, faceToEdge);
|
|
dumpFaces("faceToPoint.obj", surf, faceToPoint);
|
|
}
|
|
|
|
//
|
|
// Create coordinates for borderPoints by duplicating the existing
|
|
// point and then slightly shifting it inwards. To determine the
|
|
// inwards direction get the average normal of both connectedFaces on
|
|
// the edge and then interpolate this to the (border)point.
|
|
//
|
|
|
|
vectorField borderPointVec(surf.nPoints(), vector(GREAT, GREAT, GREAT));
|
|
|
|
calcPointVecs(surf, faceToEdge, faceToPoint, borderPointVec);
|
|
|
|
|
|
// New position. Start off from copy of old points.
|
|
pointField newPoints(surf.localPoints());
|
|
newPoints.setSize(newPoints.size() + nBorderPoints);
|
|
|
|
forAll(borderPoint, pointI)
|
|
{
|
|
label newPointI = borderPoint[pointI];
|
|
|
|
if (newPointI != -1)
|
|
{
|
|
scalar minLen = minEdgeLen(surf, pointI);
|
|
|
|
vector n = borderPointVec[pointI];
|
|
n /= mag(n);
|
|
|
|
newPoints[newPointI] = newPoints[pointI] + 0.1 * minLen * n;
|
|
}
|
|
}
|
|
|
|
|
|
//
|
|
// Renumber all faces in connectedFaces
|
|
//
|
|
|
|
// Start off from copy of faces.
|
|
List<labelledTri> newTris(surf.size());
|
|
|
|
forAll(surf, faceI)
|
|
{
|
|
newTris[faceI] = surf.localFaces()[faceI];
|
|
|
|
newTris[faceI].region() = surf[faceI].region();
|
|
}
|
|
|
|
// Renumber all faces in faceToEdge
|
|
renumberFaces(surf, borderPoint, faceToEdge, newTris);
|
|
// Renumber all faces in faceToPoint
|
|
renumberFaces(surf, borderPoint, faceToPoint, newTris);
|
|
|
|
|
|
// Check if faces use unmoved points.
|
|
forAll(newTris, faceI)
|
|
{
|
|
const labelledTri& f = newTris[faceI];
|
|
|
|
forAll(f, fp)
|
|
{
|
|
const point& pt = newPoints[f[fp]];
|
|
|
|
if (mag(pt) >= GREAT/2)
|
|
{
|
|
Info<< "newTri:" << faceI << " verts:" << f
|
|
<< " vert:" << f[fp] << " point:" << pt << endl;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
surf = triSurface(newTris, surf.patches(), newPoints);
|
|
|
|
if (debug || (iteration != 0 && (iteration % 20) == 0))
|
|
{
|
|
Info<< "Writing surface to " << outSurfName << nl << endl;
|
|
|
|
surf.write(outSurfName);
|
|
|
|
Info<< "Finished writing surface to " << outSurfName << nl << endl;
|
|
}
|
|
|
|
// Save prev iteration values.
|
|
nOldBorderEdges = nBorderEdges;
|
|
nOldBorderPoints = nBorderPoints;
|
|
|
|
iteration++;
|
|
}
|
|
while (true);
|
|
|
|
Info<< "Writing final surface to " << outSurfName << nl << endl;
|
|
|
|
surf.write(outSurfName);
|
|
|
|
Info << "End\n" << endl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|