227 lines
7.2 KiB
C++
227 lines
7.2 KiB
C++
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | foam-extend: Open Source CFD
|
|
\\ / O peration | Version: 4.1
|
|
\\ / A nd | Web: http://www.foam-extend.org
|
|
\\/ M anipulation | For copyright notice see file Copyright
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of foam-extend.
|
|
|
|
foam-extend is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation, either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
foam-extend is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Application
|
|
rhoCentralFoam
|
|
|
|
Description
|
|
Density-based compressible flow solver based on central-upwind schemes of
|
|
Kurganov and Tadmor
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "fvCFD.H"
|
|
#include "basicPsiThermo.H"
|
|
#include "zeroGradientFvPatchFields.H"
|
|
#include "fixedRhoFvPatchScalarField.H"
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
# include "setRootCase.H"
|
|
|
|
# include "createTime.H"
|
|
# include "createMesh.H"
|
|
# include "createFields.H"
|
|
# include "readThermophysicalProperties.H"
|
|
# include "createTimeControls.H"
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
# include "readFluxScheme.H"
|
|
|
|
dimensionedScalar v_zero("v_zero",dimVolume/dimTime, 0.0);
|
|
|
|
Info<< "\nStarting time loop\n" << endl;
|
|
|
|
while (runTime.run())
|
|
{
|
|
// --- upwind interpolation of primitive fields on faces
|
|
|
|
surfaceScalarField rho_pos =
|
|
fvc::interpolate(rho, pos, "reconstruct(rho)");
|
|
surfaceScalarField rho_neg =
|
|
fvc::interpolate(rho, neg, "reconstruct(rho)");
|
|
|
|
surfaceVectorField rhoU_pos =
|
|
fvc::interpolate(rhoU, pos, "reconstruct(U)");
|
|
surfaceVectorField rhoU_neg =
|
|
fvc::interpolate(rhoU, neg, "reconstruct(U)");
|
|
|
|
volScalarField rPsi = 1.0/psi;
|
|
surfaceScalarField rPsi_pos =
|
|
fvc::interpolate(rPsi, pos, "reconstruct(T)");
|
|
surfaceScalarField rPsi_neg =
|
|
fvc::interpolate(rPsi, neg, "reconstruct(T)");
|
|
|
|
surfaceScalarField e_pos =
|
|
fvc::interpolate(e, pos, "reconstruct(T)");
|
|
surfaceScalarField e_neg =
|
|
fvc::interpolate(e, neg, "reconstruct(T)");
|
|
|
|
surfaceVectorField U_pos = rhoU_pos/rho_pos;
|
|
surfaceVectorField U_neg = rhoU_neg/rho_neg;
|
|
|
|
surfaceScalarField p_pos = rho_pos*rPsi_pos;
|
|
surfaceScalarField p_neg = rho_neg*rPsi_neg;
|
|
|
|
surfaceScalarField phiv_pos = U_pos & mesh.Sf();
|
|
surfaceScalarField phiv_neg = U_neg & mesh.Sf();
|
|
|
|
volScalarField c = sqrt(thermo.Cp()/thermo.Cv()*rPsi);
|
|
surfaceScalarField cSf_pos = fvc::interpolate(c, pos, "reconstruct(T)")*mesh.magSf();
|
|
surfaceScalarField cSf_neg = fvc::interpolate(c, neg, "reconstruct(T)")*mesh.magSf();
|
|
|
|
surfaceScalarField ap = max(max(phiv_pos + cSf_pos, phiv_neg + cSf_neg), v_zero);
|
|
surfaceScalarField am = min(min(phiv_pos - cSf_pos, phiv_neg - cSf_neg), v_zero);
|
|
|
|
surfaceScalarField a_pos = ap/(ap - am);
|
|
|
|
surfaceScalarField amaxSf("amaxSf", max(mag(am), mag(ap)));
|
|
|
|
surfaceScalarField aSf = am*a_pos;
|
|
|
|
if (fluxScheme == "Tadmor")
|
|
{
|
|
aSf = -0.5*amaxSf;
|
|
a_pos = 0.5;
|
|
}
|
|
|
|
surfaceScalarField a_neg = (1.0 - a_pos);
|
|
|
|
phiv_pos *= a_pos;
|
|
phiv_neg *= a_neg;
|
|
|
|
surfaceScalarField aphiv_pos = phiv_pos - aSf;
|
|
surfaceScalarField aphiv_neg = phiv_neg + aSf;
|
|
|
|
// Reuse amaxSf for the maximum positive and negative fluxes
|
|
// estimated by the central scheme
|
|
amaxSf = max(mag(aphiv_pos), mag(aphiv_neg));
|
|
|
|
#include "compressibleCourantNo.H"
|
|
#include "readTimeControls.H"
|
|
#include "setDeltaT.H"
|
|
|
|
runTime++;
|
|
|
|
Info<< "Time = " << runTime.timeName() << nl << endl;
|
|
|
|
surfaceScalarField phi("phi", aphiv_pos*rho_pos + aphiv_neg*rho_neg);
|
|
|
|
surfaceVectorField phiUp =
|
|
(aphiv_pos*rhoU_pos + aphiv_neg*rhoU_neg)
|
|
+ (a_pos*p_pos + a_neg*p_neg)*mesh.Sf();
|
|
|
|
surfaceScalarField phiEp =
|
|
aphiv_pos*(rho_pos*(e_pos + 0.5*magSqr(U_pos)) + p_pos)
|
|
+ aphiv_neg*(rho_neg*(e_neg + 0.5*magSqr(U_neg)) + p_neg)
|
|
+ aSf*p_pos - aSf*p_neg;
|
|
|
|
volTensorField tauMC("tauMC", mu*dev2(Foam::T(fvc::grad(U))));
|
|
|
|
// --- Solve density
|
|
solve(fvm::ddt(rho) + fvc::div(phi));
|
|
|
|
// --- Solve momentum
|
|
solve(fvm::ddt(rhoU) + fvc::div(phiUp));
|
|
|
|
U.dimensionedInternalField() =
|
|
rhoU.dimensionedInternalField()
|
|
/rho.dimensionedInternalField();
|
|
U.correctBoundaryConditions();
|
|
rhoU.boundaryField() = rho.boundaryField()*U.boundaryField();
|
|
|
|
volScalarField rhoBydt(rho/runTime.deltaT());
|
|
|
|
if (!inviscid)
|
|
{
|
|
solve
|
|
(
|
|
fvm::ddt(rho, U) - fvc::ddt(rho, U)
|
|
- fvm::laplacian(mu, U)
|
|
- fvc::div(tauMC)
|
|
);
|
|
rhoU = rho*U;
|
|
}
|
|
|
|
// --- Solve energy
|
|
surfaceScalarField sigmaDotU =
|
|
(
|
|
(
|
|
fvc::interpolate(mu)*mesh.magSf()*fvc::snGrad(U)
|
|
+ (mesh.Sf() & fvc::interpolate(tauMC))
|
|
)
|
|
& (a_pos*U_pos + a_neg*U_neg)
|
|
);
|
|
|
|
solve
|
|
(
|
|
fvm::ddt(rhoE)
|
|
+ fvc::div(phiEp)
|
|
- fvc::div(sigmaDotU)
|
|
);
|
|
|
|
e = rhoE/rho - 0.5*magSqr(U);
|
|
e.correctBoundaryConditions();
|
|
thermo.correct();
|
|
rhoE.boundaryField() =
|
|
rho.boundaryField()*
|
|
(
|
|
e.boundaryField() + 0.5*magSqr(U.boundaryField())
|
|
);
|
|
|
|
if (!inviscid)
|
|
{
|
|
volScalarField k("k", thermo.Cp()*mu/Pr);
|
|
solve
|
|
(
|
|
fvm::ddt(rho, e) - fvc::ddt(rho, e)
|
|
- fvm::laplacian(thermo.alpha(), e)
|
|
+ fvc::laplacian(thermo.alpha(), e)
|
|
- fvc::laplacian(k, T)
|
|
);
|
|
thermo.correct();
|
|
rhoE = rho*(e + 0.5*magSqr(U));
|
|
}
|
|
|
|
p.dimensionedInternalField() =
|
|
rho.dimensionedInternalField()
|
|
/psi.dimensionedInternalField();
|
|
p.correctBoundaryConditions();
|
|
rho.boundaryField() = psi.boundaryField()*p.boundaryField();
|
|
|
|
runTime.write();
|
|
|
|
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
|
|
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
|
|
<< nl << endl;
|
|
}
|
|
|
|
Info<< "End\n" << endl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
// ************************************************************************* //
|