This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/solvers/combustion/PDRFoam/laminarFlameSpeed/SCOPE/SCOPELaminarFlameSpeed.C
2018-06-01 18:11:37 +02:00

438 lines
11 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration | Version: 4.1
\\ / A nd | Web: http://www.foam-extend.org
\\/ M anipulation | For copyright notice see file Copyright
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "SCOPELaminarFlameSpeed.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
namespace laminarFlameSpeedModels
{
defineTypeNameAndDebug(SCOPE, 0);
addToRunTimeSelectionTable
(
laminarFlameSpeed,
SCOPE,
dictionary
);
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::laminarFlameSpeedModels::SCOPE::polynomial::polynomial
(
const dictionary& polyDict
)
:
FixedList<scalar, 7>(polyDict.lookup("coefficients")),
ll(readScalar(polyDict.lookup("lowerLimit"))),
ul(readScalar(polyDict.lookup("upperLimit"))),
llv(polyPhi(ll, *this)),
ulv(polyPhi(ul, *this)),
lu(0)
{}
Foam::laminarFlameSpeedModels::SCOPE::SCOPE
(
const dictionary& dict,
const hhuCombustionThermo& ct
)
:
laminarFlameSpeed(dict, ct),
coeffsDict_(dict.subDict(typeName + "Coeffs").subDict(fuel_)),
LFL_(readScalar(coeffsDict_.lookup("lowerFlamabilityLimit"))),
UFL_(readScalar(coeffsDict_.lookup("upperFlamabilityLimit"))),
SuPolyL_(coeffsDict_.subDict("lowerSuPolynomial")),
SuPolyU_(coeffsDict_.subDict("upperSuPolynomial")),
Texp_(readScalar(coeffsDict_.lookup("Texp"))),
pexp_(readScalar(coeffsDict_.lookup("pexp"))),
MaPolyL_(coeffsDict_.subDict("lowerMaPolynomial")),
MaPolyU_(coeffsDict_.subDict("upperMaPolynomial"))
{
SuPolyL_.ll = max(SuPolyL_.ll, LFL_) + SMALL;
SuPolyU_.ul = min(SuPolyU_.ul, UFL_) - SMALL;
SuPolyL_.lu = 0.5*(SuPolyL_.ul + SuPolyU_.ll);
SuPolyU_.lu = SuPolyL_.lu - SMALL;
MaPolyL_.lu = 0.5*(MaPolyL_.ul + MaPolyU_.ll);
MaPolyU_.lu = MaPolyL_.lu - SMALL;
if (debug)
{
Info<< "phi Su (T = Tref, p = pref)" << endl;
label n = 200;
for (int i=0; i<n; i++)
{
scalar phi = (2.0*i)/n;
Info<< phi << token::TAB << SuRef(phi) << endl;
}
}
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::laminarFlameSpeedModels::SCOPE::~SCOPE()
{}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
inline Foam::scalar Foam::laminarFlameSpeedModels::SCOPE::polyPhi
(
scalar phi,
const polynomial& a
)
{
scalar x = phi - 1.0;
return
a[0]
*(
scalar(1)
+ x*(a[1] + x*(a[2] + x*(a[3] + x*(a[4] + x*(a[5] + x*a[6])))))
);
}
inline Foam::scalar Foam::laminarFlameSpeedModels::SCOPE::SuRef
(
scalar phi
) const
{
if (phi < LFL_ || phi > UFL_)
{
// Return 0 beyond the flamibility limits
return scalar(0);
}
else if (phi < SuPolyL_.ll)
{
// Use linear interpolation between the low end of the
// lower polynomial and the lower flamibility limit
return SuPolyL_.llv*(phi - LFL_)/(SuPolyL_.ll - LFL_);
}
else if (phi > SuPolyU_.ul)
{
// Use linear interpolation between the upper end of the
// upper polynomial and the upper flamibility limit
return SuPolyU_.ulv*(UFL_ - phi)/(UFL_ - SuPolyU_.ul);
}
else if (phi < SuPolyL_.lu)
{
// Evaluate the lower polynomial
return polyPhi(phi, SuPolyL_);
}
else if (phi > SuPolyU_.lu)
{
// Evaluate the upper polynomial
return polyPhi(phi, SuPolyU_);
}
else
{
FatalErrorIn("laminarFlameSpeedModels::SCOPE::SuRef(scalar phi)")
<< "phi = " << phi
<< " cannot be handled by SCOPE function with the "
"given coefficients"
<< exit(FatalError);
return scalar(0);
}
}
inline Foam::scalar Foam::laminarFlameSpeedModels::SCOPE::Ma
(
scalar phi
) const
{
if (phi < MaPolyL_.ll)
{
// Beyond the lower limit assume Ma is constant
return MaPolyL_.llv;
}
else if (phi > MaPolyU_.ul)
{
// Beyond the upper limit assume Ma is constant
return MaPolyU_.ulv;
}
else if (phi < SuPolyL_.lu)
{
// Evaluate the lower polynomial
return polyPhi(phi, MaPolyL_);
}
else if (phi > SuPolyU_.lu)
{
// Evaluate the upper polynomial
return polyPhi(phi, MaPolyU_);
}
else
{
FatalErrorIn("laminarFlameSpeedModels::SCOPE::Ma(scalar phi)")
<< "phi = " << phi
<< " cannot be handled by SCOPE function with the "
"given coefficients"
<< exit(FatalError);
return scalar(0);
}
}
inline Foam::scalar Foam::laminarFlameSpeedModels::SCOPE::Su0pTphi
(
scalar p,
scalar Tu,
scalar phi
) const
{
static const scalar Tref = 300.0;
static const scalar pRef = 1.013e5;
return SuRef(phi)*pow((Tu/Tref), Texp_)*pow((p/pRef), pexp_);
}
Foam::tmp<Foam::volScalarField> Foam::laminarFlameSpeedModels::SCOPE::Su0pTphi
(
const volScalarField& p,
const volScalarField& Tu,
scalar phi
) const
{
tmp<volScalarField> tSu0
(
new volScalarField
(
IOobject
(
"Su0",
p.time().timeName(),
p.db(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
p.mesh(),
dimensionedScalar("Su0", dimVelocity, 0.0)
)
);
volScalarField& Su0 = tSu0();
forAll(Su0, celli)
{
Su0[celli] = Su0pTphi(p[celli], Tu[celli], phi);
}
forAll(Su0.boundaryField(), patchi)
{
scalarField& Su0p = Su0.boundaryField()[patchi];
const scalarField& pp = p.boundaryField()[patchi];
const scalarField& Tup = Tu.boundaryField()[patchi];
forAll(Su0p, facei)
{
Su0p[facei] = Su0pTphi(pp[facei], Tup[facei], phi);
}
}
return tSu0;
}
Foam::tmp<Foam::volScalarField> Foam::laminarFlameSpeedModels::SCOPE::Su0pTphi
(
const volScalarField& p,
const volScalarField& Tu,
const volScalarField& phi
) const
{
tmp<volScalarField> tSu0
(
new volScalarField
(
IOobject
(
"Su0",
p.time().timeName(),
p.db(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
p.mesh(),
dimensionedScalar("Su0", dimVelocity, 0.0)
)
);
volScalarField& Su0 = tSu0();
forAll(Su0, celli)
{
Su0[celli] = Su0pTphi(p[celli], Tu[celli], phi[celli]);
}
forAll(Su0.boundaryField(), patchi)
{
scalarField& Su0p = Su0.boundaryField()[patchi];
const scalarField& pp = p.boundaryField()[patchi];
const scalarField& Tup = Tu.boundaryField()[patchi];
const scalarField& phip = phi.boundaryField()[patchi];
forAll(Su0p, facei)
{
Su0p[facei] =
Su0pTphi
(
pp[facei],
Tup[facei],
phip[facei]
);
}
}
return tSu0;
}
Foam::tmp<Foam::volScalarField> Foam::laminarFlameSpeedModels::SCOPE::Ma
(
const volScalarField& phi
) const
{
tmp<volScalarField> tMa
(
new volScalarField
(
IOobject
(
"Ma",
phi.time().timeName(),
phi.db(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
phi.mesh(),
dimensionedScalar("Ma", dimless, 0.0)
)
);
volScalarField& ma = tMa();
forAll(ma, celli)
{
ma[celli] = Ma(phi[celli]);
}
forAll(ma.boundaryField(), patchi)
{
scalarField& map = ma.boundaryField()[patchi];
const scalarField& phip = phi.boundaryField()[patchi];
forAll(map, facei)
{
map[facei] = Ma(phip[facei]);
}
}
return tMa;
}
Foam::tmp<Foam::volScalarField>
Foam::laminarFlameSpeedModels::SCOPE::Ma() const
{
if (hhuCombustionThermo_.composition().contains("ft"))
{
const volScalarField& ft = hhuCombustionThermo_.composition().Y("ft");
return Ma
(
dimensionedScalar
(
hhuCombustionThermo_.lookup("stoichiometricAirFuelMassRatio")
)*ft/(scalar(1) - ft)
);
}
else
{
const fvMesh& mesh = hhuCombustionThermo_.p().mesh();
return tmp<volScalarField>
(
new volScalarField
(
IOobject
(
"Ma",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("Ma", dimless, Ma(equivalenceRatio_))
)
);
}
}
Foam::tmp<Foam::volScalarField>
Foam::laminarFlameSpeedModels::SCOPE::operator()() const
{
if (hhuCombustionThermo_.composition().contains("ft"))
{
const volScalarField& ft = hhuCombustionThermo_.composition().Y("ft");
return Su0pTphi
(
hhuCombustionThermo_.p(),
hhuCombustionThermo_.Tu(),
dimensionedScalar
(
hhuCombustionThermo_.lookup("stoichiometricAirFuelMassRatio")
)*ft/(scalar(1) - ft)
);
}
else
{
return Su0pTphi
(
hhuCombustionThermo_.p(),
hhuCombustionThermo_.Tu(),
equivalenceRatio_
);
}
}
// ************************************************************************* //