71 lines
1.8 KiB
C
71 lines
1.8 KiB
C
{
|
|
bool closedVolume = p.needReference();
|
|
|
|
rho = thermo.rho();
|
|
|
|
// Thermodynamic density needs to be updated by psi*d(p) after the
|
|
// pressure solution - done in 2 parts. Part 1:
|
|
thermo.rho() -= psi*p;
|
|
|
|
volScalarField rUA = 1.0/UEqn.A();
|
|
surfaceScalarField rhorUAf("(rho*(1|A(U)))", fvc::interpolate(rho*rUA));
|
|
|
|
U = rUA*UEqn.H();
|
|
|
|
surfaceScalarField phiU
|
|
(
|
|
fvc::interpolate(rho)
|
|
*(
|
|
(fvc::interpolate(U) & mesh.Sf())
|
|
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
|
)
|
|
);
|
|
|
|
phi = phiU + rhorUAf*fvc::interpolate(rho)*(g & mesh.Sf());
|
|
|
|
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
|
{
|
|
fvScalarMatrix pEqn
|
|
(
|
|
fvc::ddt(rho) + psi*correction(fvm::ddt(p))
|
|
+ fvc::div(phi)
|
|
- fvm::laplacian(rhorUAf, p)
|
|
);
|
|
|
|
if (corr == nCorr - 1 && nonOrth == nNonOrthCorr)
|
|
{
|
|
pEqn.solve(mesh.solutionDict().solver(p.name() + "Final"));
|
|
}
|
|
else
|
|
{
|
|
pEqn.solve(mesh.solutionDict().solver(p.name()));
|
|
}
|
|
|
|
if (nonOrth == nNonOrthCorr)
|
|
{
|
|
phi += pEqn.flux();
|
|
}
|
|
}
|
|
|
|
// Second part of thermodynamic density update
|
|
thermo.rho() += psi*p;
|
|
|
|
U += rUA*fvc::reconstruct((phi - phiU)/rhorUAf);
|
|
U.correctBoundaryConditions();
|
|
|
|
DpDt = fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
|
|
|
|
#include "rhoEqn.H"
|
|
#include "compressibleContinuityErrs.H"
|
|
|
|
// For closed-volume cases adjust the pressure and density levels
|
|
// to obey overall mass continuity
|
|
if (closedVolume)
|
|
{
|
|
p +=
|
|
(initialMass - fvc::domainIntegrate(psi*p))
|
|
/fvc::domainIntegrate(psi);
|
|
thermo.rho() = psi*p;
|
|
rho += (initialMass - fvc::domainIntegrate(rho))/totalVolume;
|
|
}
|
|
}
|