This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/utilities/parallelProcessing/reconstructParMesh/tetPointFieldReconstructorReconstructFields.C
2013-07-18 10:15:54 +02:00

373 lines
11 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright held by original author
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
\*---------------------------------------------------------------------------*/
#include "tetPointFieldReconstructor.H"
#include "PtrList.H"
#include "tetPolyPatchFields.H"
#include "tetFemMatrices.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
template<class Type>
tmp<GeometricField<Type, tetPolyPatchField, tetPointMesh> >
tetPointFieldReconstructor::reconstructTetPointField
(
const IOobject& fieldIoObject
)
{
// Read the field for all the processors
PtrList<GeometricField<Type, tetPolyPatchField, tetPointMesh> > procFields
(
procMeshes_.size()
);
forAll (procMeshes_, procI)
{
procFields.set
(
procI,
new GeometricField<Type, tetPolyPatchField, tetPointMesh>
(
IOobject
(
fieldIoObject.name(),
procMeshes_[procI]().time().timeName(),
procMeshes_[procI](),
IOobject::MUST_READ,
IOobject::NO_WRITE
),
procMeshes_[procI]
)
);
}
// Create the internalField
Field<Type> internalField(mesh_.nPoints());
// Create the patch fields
PtrList<tetPolyPatchField<Type> > patchFields(mesh_.boundary().size());
forAll (procMeshes_, procI)
{
const GeometricField<Type, tetPolyPatchField, tetPointMesh>&
procField = procFields[procI];
// Get processor-to-global addressing for use in rmap
labelList procToGlobalAddr = procAddressing(procI);
// Set the cell values in the reconstructed field
internalField.rmap
(
procField.internalField(),
procToGlobalAddr
);
// Set the boundary patch values in the reconstructed field
forAll(boundaryProcAddressing_[procI], patchI)
{
// Get patch index of the original patch
const label curBPatch = boundaryProcAddressing_[procI][patchI];
// check if the boundary patch is not a processor patch
if (curBPatch >= 0)
{
if (!patchFields(curBPatch))
{
patchFields.set
(
curBPatch,
tetPolyPatchField<Type>::New
(
procField.boundaryField()[patchI],
mesh_.boundary()[curBPatch],
DimensionedField<Type, tetPointMesh>::null(),
tetPolyPatchFieldReconstructor
(
mesh_.boundary()[curBPatch].size(),
procField.boundaryField()[patchI].size()
)
)
);
}
// If the field stores values, do the rmap
if (patchFields[curBPatch].storesFieldData())
{
patchFields[curBPatch].rmap
(
procField.boundaryField()[patchI],
procPatchAddressing
(
procToGlobalAddr,
procI,
patchI
)
);
}
}
}
}
// Now construct and write the field
// setting the internalField and patchFields
return tmp<GeometricField<Type, tetPolyPatchField, tetPointMesh> >
(
new GeometricField<Type, tetPolyPatchField, tetPointMesh>
(
IOobject
(
fieldIoObject.name(),
mesh_().time().timeName(),
mesh_(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh_,
procFields[0].dimensions(),
internalField,
patchFields
)
);
}
template<class Type>
tmp<GeometricField<Type, elementPatchField, elementMesh> >
tetPointFieldReconstructor::reconstructElementField
(
const IOobject& fieldIoObject
)
{
// Read the field for all the processors
PtrList<GeometricField<Type, elementPatchField, elementMesh> > procFields
(
procMeshes_.size()
);
forAll (procMeshes_, procI)
{
procFields.set
(
procI,
new GeometricField<Type, elementPatchField, elementMesh>
(
IOobject
(
fieldIoObject.name(),
procMeshes_[procI]().time().timeName(),
procMeshes_[procI](),
IOobject::MUST_READ,
IOobject::NO_WRITE
),
procMeshes_[procI]
)
);
}
// Create the internalField
Field<Type> internalField(mesh_.nCells());
// Create the patch fields
PtrList<elementPatchField<Type> > patchFields(mesh_.boundary().size());
forAll (procMeshes_, procI)
{
const GeometricField<Type, elementPatchField, elementMesh>&
procField = procFields[procI];
// Set the cell values in the reconstructed field
internalField.rmap
(
procField.internalField(),
cellProcAddressing_[procI]
);
// Set the boundary patch values in the reconstructed field
forAll(boundaryProcAddressing_[procI], patchI)
{
// Get patch index of the original patch
const label curBPatch = boundaryProcAddressing_[procI][patchI];
// Get addressing slice for this patch
const labelList::subList cp =
procMeshes_[procI]().boundaryMesh()[patchI].patchSlice
(
faceProcAddressing_[procI]
);
// check if the boundary patch is not a processor patch
if (curBPatch >= 0)
{
if (!patchFields(curBPatch))
{
patchFields.set
(
curBPatch,
elementPatchField<Type>::New
(
procField.boundaryField()[patchI],
mesh_.boundary()[curBPatch],
DimensionedField<Type, elementMesh>::null(),
tetPolyPatchFieldReconstructor
(
mesh_.boundary()[curBPatch].size(),
procField.boundaryField()[patchI].size()
)
)
);
}
// If the field stores values, do the rmap
if (patchFields[curBPatch].storesFieldData())
{
const label curPatchStart =
mesh_().boundaryMesh()[curBPatch].start();
labelList reverseAddressing(cp.size());
forAll(cp, faceI)
{
// Subtract one to take into account offsets for
// face direction.
reverseAddressing[faceI] = cp[faceI] - 1
- curPatchStart;
}
patchFields[curBPatch].rmap
(
procField.boundaryField()[patchI],
reverseAddressing
);
}
}
}
}
// Now construct and write the field
// setting the internalField and patchFields
return tmp<GeometricField<Type, elementPatchField, elementMesh> >
(
new GeometricField<Type, elementPatchField, elementMesh>
(
IOobject
(
fieldIoObject.name(),
mesh_().time().timeName(),
mesh_(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh_,
procFields[0].dimensions(),
internalField,
patchFields
)
);
}
template<class Type>
void tetPointFieldReconstructor::reconstructTetPointFields
(
const IOobjectList& objects
)
{
word fieldClassName
(
GeometricField<Type, tetPolyPatchField, tetPointMesh>::typeName
);
IOobjectList fields = objects.lookupClass(fieldClassName);
if (fields.size())
{
Info<< " Reconstructing " << fieldClassName << "s\n" << endl;
for
(
IOobjectList::iterator fieldIter = fields.begin();
fieldIter != fields.end();
++fieldIter
)
{
Info<< " " << fieldIter()->name() << endl;
reconstructTetPointField<Type>(*fieldIter())().write();
}
Info<< endl;
}
}
template<class Type>
void tetPointFieldReconstructor::reconstructElementFields
(
const IOobjectList& objects
)
{
word fieldClassName
(
GeometricField<Type, elementPatchField, elementMesh>::typeName
);
IOobjectList fields = objects.lookupClass(fieldClassName);
if (fields.size())
{
Info<< " Reconstructing " << fieldClassName << "s\n" << endl;
for
(
IOobjectList::iterator fieldIter = fields.begin();
fieldIter != fields.end();
++fieldIter
)
{
Info<< " " << fieldIter()->name() << endl;
reconstructElementField<Type>(*fieldIter())().write();
}
Info<< endl;
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// ************************************************************************* //