This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/solvers/solidMechanics/elasticPlasticNonLinULSolidFoam/elasticPlasticNonLinULSolidFoam.C
2013-11-07 20:22:30 +00:00

208 lines
6.6 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2005 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Application
elasticPlasticNonLinULSolidFoam
Description
Finite volume structural solver employing a incremental strain updated
Lagrangian approach.
Valid for small strains, finite displacements and finite rotations.
Note: the reason the solver is not strictly valid for large strains is
because the constitutive stiffness tensor is not rotated.
For an updated Lagrangian solver which does rotate the stiffness tensor, and
hence is strictly Valid for large strains, use
elasticOrthoNonLinULSolidFoam.
Author
Philip Cardiff UCD
Aitken relaxation by T. Tang DTU
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "constitutiveModel.H"
#include "volPointInterpolation.H"
#include "pointPatchInterpolation.H"
#include "primitivePatchInterpolation.H"
#include "pointFields.H"
#include "twoDPointCorrector.H"
#include "leastSquaresVolPointInterpolation.H"
#include "transformGeometricField.H"
#include "solidContactFvPatchVectorField.H"
#include "pointMesh.H"
#include "symmetryPolyPatch.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
# include "createFields.H"
# include "createHistory.H"
# include "readDivDSigmaExpMethod.H"
# include "readDivDSigmaNonLinExpMethod.H"
# include "readMoveMeshMethod.H"
# include "findGlobalFaceZones.H"
//* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info << "\nStarting time loop\n" << endl;
for (runTime++; !runTime.end(); runTime++)
{
Info<< "Time = " << runTime.timeName() << nl << endl;
# include "readSolidMechanicsControls.H"
int iCorr = 0;
lduMatrix::solverPerformance solverPerf;
scalar initialResidual = 0;
scalar relativeResidual = 1.0;
lduMatrix::debug = 0;
do
{
DU.storePrevIter();
# include "calculateDivDSigmaExp.H"
# include "calculateDivDSigmaNonLinExp.H"
// Updated lagrangian large strain momentum equation
fvVectorMatrix DUEqn
(
fvm::d2dt2(rho,DU)
==
fvm::laplacian(2*muf + lambdaf, DU, "laplacian(DDU,DU)")
+ divDSigmaExp
+ divDSigmaNonLinExp
//- fvc::div(2*mu*DEpsilonP, "div(sigma)")
- fvc::div(2*muf*( mesh.Sf() & fvc::interpolate(DEpsilonP)) )
);
if(nonLinearSemiImplicit)
{
// experimental
// we can treat the nonlinear term (gradDU & gradDU.T()) in a
// semi-implicit over-relaxed manner
// this should improve convergence when gradDU is large
// but maybe not execution time
DUEqn -=
fvm::laplacian
(
(2*mu + lambda)*gradDU, DU, "laplacian(DDU,DU)"
)
- fvc::div( (2*mu + lambda)*(gradDU&gradDU), "div(sigma)");
}
solverPerf = DUEqn.solve();
if(iCorr == 0)
{
initialResidual = solverPerf.initialResidual();
}
if(aitkenRelax)
{
# include "aitkenRelaxation.H"
}
else
{
DU.relax();
}
gradDU = fvc::grad(DU);
// correct plasticty term
rheology.correct();
// correct elastic properties
// for nonlinear elastic materials
//mu = rheology.newMu();
//lambda = rheology.newLambda();
//muf = fvc::interpolate(mu);
//lambdaf = fvc::interpolate(lambda);
# include "calculateDEpsilonDSigma.H"
# include "calculateRelativeResidual.H"
if(iCorr % infoFrequency == 0)
{
Info<< "\tTime " << runTime.value()
<< ", Corrector " << iCorr
<< ", Solving for " << DU.name()
<< " using " << solverPerf.solverName()
<< ", res = " << solverPerf.initialResidual()
<< ", rel res = " << relativeResidual;
if(aitkenRelax)
{
Info<< ", aitken = " << aitkenTheta;
}
Info<< ", iters = " << solverPerf.nIterations() << endl;
}
}
while
(
iCorr++ < 2
||
(//solverPerf.initialResidual() > convergenceTolerance
relativeResidual > convergenceTolerance
&&
iCorr < nCorr)
);
Info<< nl << "Time " << runTime.value() << ", Solving for " << DU.name()
<< ", Initial residual = " << initialResidual
<< ", Final residual = " << solverPerf.initialResidual()
<< ", Final rel residual = " << relativeResidual
<< ", No outer iterations " << iCorr << endl;
rheology.updateYieldStress();
U += DU;
epsilon += DEpsilon;
epsilonP += DEpsilonP;
sigma += DSigma;
# include "moveMesh.H"
# include "rotateFields.H"
# include "writeFields.H"
# include "writeHistory.H"
Info<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< endl;
}
Info<< "End\n" << endl;
return(0);
}
// ************************************************************************* //