dc6d3f61dc
Conflicts: applications/solvers/compressible/steadyCompressibleFoam/hEqn.H
37 lines
927 B
C
37 lines
927 B
C
{
|
|
// Solve the enthalpy equation
|
|
T.storePrevIter();
|
|
|
|
// Calculate face velocity from flux
|
|
surfaceScalarField faceU
|
|
(
|
|
"faceU",
|
|
phi/fvc::interpolate(rho)
|
|
);
|
|
|
|
fvScalarMatrix hEqn
|
|
(
|
|
fvm::ddt(rho, h)
|
|
+ fvm::div(phi, h)
|
|
- fvm::laplacian(turbulence->alphaEff(), h)
|
|
+ fvm::SuSp((fvc::div(faceU, p, "div(U,p)") - p*fvc::div(faceU))/h, h)
|
|
==
|
|
// ddt(p) term removed: steady-state. HJ, 27/Apr/2010
|
|
// Viscous heating: note sign (devRhoReff has a minus in it)
|
|
- (turbulence->devRhoReff() && fvc::grad(U))
|
|
);
|
|
|
|
hEqn.relax();
|
|
|
|
eqnResidual = hEqn.solve().initialResidual();
|
|
maxResidual = max(eqnResidual, maxResidual);
|
|
|
|
// Bound the enthalpy using TMin and TMax
|
|
volScalarField Cp = thermo.Cp();
|
|
|
|
h = Foam::min(h, TMax*Cp);
|
|
h = Foam::max(h, TMin*Cp);
|
|
h.correctBoundaryConditions();
|
|
|
|
thermo.correct();
|
|
}
|