549 lines
16 KiB
C
549 lines
16 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration |
|
|
\\ / A nd | Copyright held by original author
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 2 of the License, or (at your
|
|
option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM; if not, write to the Free Software Foundation,
|
|
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
Description
|
|
Calculate the dual of a polyMesh. Adheres to all the feature and patch
|
|
edges.
|
|
|
|
Usage
|
|
|
|
- polyDualMesh featureAngle
|
|
|
|
Detects any boundary edge > angle and creates multiple boundary faces
|
|
for it. Normal behaviour is to have each point become a cell
|
|
(1.5 behaviour)
|
|
|
|
@param -concaveMultiCells
|
|
Creates multiple cells for each point on a concave edge. Might limit
|
|
the amount of distortion on some meshes.
|
|
|
|
@param -splitAllFaces
|
|
Normally only constructs a single face between two cells. This single face
|
|
might be too distorted. splitAllFaces will create a single face for every
|
|
original cell the face passes through. The mesh will thus have
|
|
multiple faces inbetween two cells! (so is not strictly upper-triangular
|
|
anymore - checkMesh will complain)
|
|
|
|
@param -doNotPreserveFaceZones:
|
|
By default all faceZones are preserved by marking all faces, edges and
|
|
points on them as features. The -doNotPreserveFaceZones disables this
|
|
behaviour.
|
|
|
|
Note: is just a driver for meshDualiser. Substitute your own
|
|
simpleMarkFeatures to have different behaviour.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "argList.H"
|
|
#include "Time.H"
|
|
#include "timeSelector.H"
|
|
#include "fvMesh.H"
|
|
#include "mathematicalConstants.H"
|
|
#include "directTopoChange.H"
|
|
#include "mapPolyMesh.H"
|
|
#include "PackedBoolList.H"
|
|
#include "meshTools.H"
|
|
#include "OFstream.H"
|
|
#include "meshDualiser.H"
|
|
#include "ReadFields.H"
|
|
#include "volFields.H"
|
|
#include "surfaceFields.H"
|
|
|
|
using namespace Foam;
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
// Naive feature detection. All boundary edges with angle > featureAngle become
|
|
// feature edges. All points on feature edges become feature points. All
|
|
// boundary faces become feature faces.
|
|
void simpleMarkFeatures
|
|
(
|
|
const polyMesh& mesh,
|
|
const PackedBoolList& isBoundaryEdge,
|
|
const scalar featureAngle,
|
|
const bool concaveMultiCells,
|
|
const bool doNotPreserveFaceZones,
|
|
|
|
labelList& featureFaces,
|
|
labelList& featureEdges,
|
|
labelList& singleCellFeaturePoints,
|
|
labelList& multiCellFeaturePoints
|
|
)
|
|
{
|
|
scalar minCos = Foam::cos(featureAngle * mathematicalConstant::pi/180.0);
|
|
|
|
const polyBoundaryMesh& patches = mesh.boundaryMesh();
|
|
|
|
// Working sets
|
|
labelHashSet featureEdgeSet;
|
|
labelHashSet singleCellFeaturePointSet;
|
|
labelHashSet multiCellFeaturePointSet;
|
|
|
|
|
|
// 1. Mark all edges between patches
|
|
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
forAll(patches, patchI)
|
|
{
|
|
const polyPatch& pp = patches[patchI];
|
|
const labelList& meshEdges = pp.meshEdges();
|
|
|
|
// All patch corner edges. These need to be feature points & edges!
|
|
for (label edgeI = pp.nInternalEdges(); edgeI < pp.nEdges(); edgeI++)
|
|
{
|
|
label meshEdgeI = meshEdges[edgeI];
|
|
featureEdgeSet.insert(meshEdgeI);
|
|
singleCellFeaturePointSet.insert(mesh.edges()[meshEdgeI][0]);
|
|
singleCellFeaturePointSet.insert(mesh.edges()[meshEdgeI][1]);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// 2. Mark all geometric feature edges
|
|
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
// Make distinction between convex features where the boundary point becomes
|
|
// a single cell and concave features where the boundary point becomes
|
|
// multiple 'half' cells.
|
|
|
|
// Addressing for all outside faces
|
|
primitivePatch allBoundary
|
|
(
|
|
SubList<face>
|
|
(
|
|
mesh.faces(),
|
|
mesh.nFaces()-mesh.nInternalFaces(),
|
|
mesh.nInternalFaces()
|
|
),
|
|
mesh.points()
|
|
);
|
|
|
|
// Check for non-manifold points (surface pinched at point)
|
|
allBoundary.checkPointManifold(false, &singleCellFeaturePointSet);
|
|
|
|
// Check for non-manifold edges (surface pinched at edge)
|
|
const labelListList& edgeFaces = allBoundary.edgeFaces();
|
|
const labelList& meshPoints = allBoundary.meshPoints();
|
|
|
|
forAll(edgeFaces, edgeI)
|
|
{
|
|
const labelList& eFaces = edgeFaces[edgeI];
|
|
|
|
if (eFaces.size() > 2)
|
|
{
|
|
const edge& e = allBoundary.edges()[edgeI];
|
|
|
|
//Info<< "Detected non-manifold boundary edge:" << edgeI
|
|
// << " coords:"
|
|
// << allBoundary.points()[meshPoints[e[0]]]
|
|
// << allBoundary.points()[meshPoints[e[1]]] << endl;
|
|
|
|
singleCellFeaturePointSet.insert(meshPoints[e[0]]);
|
|
singleCellFeaturePointSet.insert(meshPoints[e[1]]);
|
|
}
|
|
}
|
|
|
|
// Check for features.
|
|
forAll(edgeFaces, edgeI)
|
|
{
|
|
const labelList& eFaces = edgeFaces[edgeI];
|
|
|
|
if (eFaces.size() == 2)
|
|
{
|
|
label f0 = eFaces[0];
|
|
label f1 = eFaces[1];
|
|
|
|
// check angle
|
|
const vector& n0 = allBoundary.faceNormals()[f0];
|
|
const vector& n1 = allBoundary.faceNormals()[f1];
|
|
|
|
if ((n0 & n1) < minCos)
|
|
{
|
|
const edge& e = allBoundary.edges()[edgeI];
|
|
label v0 = meshPoints[e[0]];
|
|
label v1 = meshPoints[e[1]];
|
|
|
|
label meshEdgeI = meshTools::findEdge(mesh, v0, v1);
|
|
featureEdgeSet.insert(meshEdgeI);
|
|
|
|
// Check if convex or concave by looking at angle
|
|
// between face centres and normal
|
|
vector c1c0
|
|
(
|
|
allBoundary[f1].centre(allBoundary.points())
|
|
- allBoundary[f0].centre(allBoundary.points())
|
|
);
|
|
|
|
if (concaveMultiCells && (c1c0 & n0) > SMALL)
|
|
{
|
|
// Found concave edge. Make into multiCell features
|
|
Info<< "Detected concave feature edge:" << edgeI
|
|
<< " cos:" << (c1c0 & n0)
|
|
<< " coords:"
|
|
<< allBoundary.points()[v0]
|
|
<< allBoundary.points()[v1]
|
|
<< endl;
|
|
|
|
singleCellFeaturePointSet.erase(v0);
|
|
multiCellFeaturePointSet.insert(v0);
|
|
singleCellFeaturePointSet.erase(v1);
|
|
multiCellFeaturePointSet.insert(v1);
|
|
}
|
|
else
|
|
{
|
|
// Convex. singleCell feature.
|
|
if (!multiCellFeaturePointSet.found(v0))
|
|
{
|
|
singleCellFeaturePointSet.insert(v0);
|
|
}
|
|
if (!multiCellFeaturePointSet.found(v1))
|
|
{
|
|
singleCellFeaturePointSet.insert(v1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// 3. Mark all feature faces
|
|
// ~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
// Face centres that need inclusion in the dual mesh
|
|
labelHashSet featureFaceSet(mesh.nFaces()-mesh.nInternalFaces());
|
|
// A. boundary faces.
|
|
for (label faceI = mesh.nInternalFaces(); faceI < mesh.nFaces(); faceI++)
|
|
{
|
|
featureFaceSet.insert(faceI);
|
|
}
|
|
|
|
// B. face zones.
|
|
const faceZoneMesh& faceZones = mesh.faceZones();
|
|
|
|
if (doNotPreserveFaceZones)
|
|
{
|
|
if (faceZones.size() > 0)
|
|
{
|
|
WarningIn("simpleMarkFeatures(..)")
|
|
<< "Detected " << faceZones.size()
|
|
<< " faceZones. These will not be preserved."
|
|
<< endl;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (faceZones.size() > 0)
|
|
{
|
|
Info<< "Detected " << faceZones.size()
|
|
<< " faceZones. Preserving these by marking their"
|
|
<< " points, edges and faces as features." << endl;
|
|
}
|
|
|
|
forAll(faceZones, zoneI)
|
|
{
|
|
const faceZone& fz = faceZones[zoneI];
|
|
|
|
Info<< "Inserting all faces in faceZone " << fz.name()
|
|
<< " as features." << endl;
|
|
|
|
forAll(fz, i)
|
|
{
|
|
label faceI = fz[i];
|
|
const face& f = mesh.faces()[faceI];
|
|
const labelList& fEdges = mesh.faceEdges()[faceI];
|
|
|
|
featureFaceSet.insert(faceI);
|
|
forAll(f, fp)
|
|
{
|
|
// Mark point as multi cell point (since both sides of
|
|
// face should have different cells)
|
|
singleCellFeaturePointSet.erase(f[fp]);
|
|
multiCellFeaturePointSet.insert(f[fp]);
|
|
|
|
// Make sure there are points on the edges.
|
|
featureEdgeSet.insert(fEdges[fp]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Transfer to arguments
|
|
featureFaces = featureFaceSet.toc();
|
|
featureEdges = featureEdgeSet.toc();
|
|
singleCellFeaturePoints = singleCellFeaturePointSet.toc();
|
|
multiCellFeaturePoints = multiCellFeaturePointSet.toc();
|
|
}
|
|
|
|
|
|
// Dump features to .obj files
|
|
void dumpFeatures
|
|
(
|
|
const polyMesh& mesh,
|
|
const labelList& featureFaces,
|
|
const labelList& featureEdges,
|
|
const labelList& singleCellFeaturePoints,
|
|
const labelList& multiCellFeaturePoints
|
|
)
|
|
{
|
|
{
|
|
OFstream str("featureFaces.obj");
|
|
Info<< "Dumping centres of featureFaces to obj file " << str.name()
|
|
<< endl;
|
|
forAll(featureFaces, i)
|
|
{
|
|
meshTools::writeOBJ(str, mesh.faceCentres()[featureFaces[i]]);
|
|
}
|
|
}
|
|
{
|
|
OFstream str("featureEdges.obj");
|
|
Info<< "Dumping featureEdges to obj file " << str.name() << endl;
|
|
label vertI = 0;
|
|
|
|
forAll(featureEdges, i)
|
|
{
|
|
const edge& e = mesh.edges()[featureEdges[i]];
|
|
meshTools::writeOBJ(str, mesh.points()[e[0]]);
|
|
vertI++;
|
|
meshTools::writeOBJ(str, mesh.points()[e[1]]);
|
|
vertI++;
|
|
str<< "l " << vertI-1 << ' ' << vertI << nl;
|
|
}
|
|
}
|
|
{
|
|
OFstream str("singleCellFeaturePoints.obj");
|
|
Info<< "Dumping featurePoints that become a single cell to obj file "
|
|
<< str.name() << endl;
|
|
forAll(singleCellFeaturePoints, i)
|
|
{
|
|
meshTools::writeOBJ(str, mesh.points()[singleCellFeaturePoints[i]]);
|
|
}
|
|
}
|
|
{
|
|
OFstream str("multiCellFeaturePoints.obj");
|
|
Info<< "Dumping featurePoints that become multiple cells to obj file "
|
|
<< str.name() << endl;
|
|
forAll(multiCellFeaturePoints, i)
|
|
{
|
|
meshTools::writeOBJ(str, mesh.points()[multiCellFeaturePoints[i]]);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
argList::noParallel();
|
|
timeSelector::addOptions(true, false);
|
|
|
|
argList::validArgs.append("feature angle[0-180]");
|
|
argList::validOptions.insert("splitAllFaces", "");
|
|
argList::validOptions.insert("concaveMultiCells", "");
|
|
argList::validOptions.insert("doNotPreserveFaceZones", "");
|
|
argList::validOptions.insert("overwrite", "");
|
|
|
|
# include "setRootCase.H"
|
|
# include "createTime.H"
|
|
|
|
instantList timeDirs = timeSelector::select0(runTime, args);
|
|
|
|
# include "createMesh.H"
|
|
|
|
const word oldInstance = mesh.pointsInstance();
|
|
|
|
// Mark boundary edges and points.
|
|
// (Note: in 1.4.2 we can use the built-in mesh point ordering
|
|
// facility instead)
|
|
PackedBoolList isBoundaryEdge(mesh.nEdges());
|
|
for (label faceI = mesh.nInternalFaces(); faceI < mesh.nFaces(); faceI++)
|
|
{
|
|
const labelList& fEdges = mesh.faceEdges()[faceI];
|
|
|
|
forAll(fEdges, i)
|
|
{
|
|
isBoundaryEdge.set(fEdges[i], 1);
|
|
}
|
|
}
|
|
|
|
scalar featureAngle(readScalar(IStringStream(args.additionalArgs()[0])()));
|
|
|
|
scalar minCos = Foam::cos(featureAngle * mathematicalConstant::pi/180.0);
|
|
|
|
Info<< "Feature:" << featureAngle << endl
|
|
<< "minCos :" << minCos << endl
|
|
<< endl;
|
|
|
|
|
|
const bool splitAllFaces = args.optionFound("splitAllFaces");
|
|
if (splitAllFaces)
|
|
{
|
|
Info<< "Splitting all internal faces to create multiple faces"
|
|
<< " between two cells." << nl
|
|
<< endl;
|
|
}
|
|
|
|
const bool overwrite = args.optionFound("overwrite");
|
|
const bool doNotPreserveFaceZones = args.optionFound
|
|
(
|
|
"doNotPreserveFaceZones"
|
|
);
|
|
const bool concaveMultiCells = args.optionFound("concaveMultiCells");
|
|
if (concaveMultiCells)
|
|
{
|
|
Info<< "Generating multiple cells for points on concave feature edges."
|
|
<< nl << endl;
|
|
}
|
|
|
|
|
|
// Face(centre)s that need inclusion in the dual mesh
|
|
labelList featureFaces;
|
|
// Edge(centre)s ,,
|
|
labelList featureEdges;
|
|
// Points (that become a single cell) that need inclusion in the dual mesh
|
|
labelList singleCellFeaturePoints;
|
|
// Points (that become a multiple cells) ,,
|
|
labelList multiCellFeaturePoints;
|
|
|
|
// Sample implementation of feature detection.
|
|
simpleMarkFeatures
|
|
(
|
|
mesh,
|
|
isBoundaryEdge,
|
|
featureAngle,
|
|
concaveMultiCells,
|
|
doNotPreserveFaceZones,
|
|
|
|
featureFaces,
|
|
featureEdges,
|
|
singleCellFeaturePoints,
|
|
multiCellFeaturePoints
|
|
);
|
|
|
|
// If we want to split all polyMesh faces into one dualface per cell
|
|
// we are passing through we also need a point
|
|
// at the polyMesh facecentre and edgemid of the faces we want to
|
|
// split.
|
|
if (splitAllFaces)
|
|
{
|
|
featureEdges = identity(mesh.nEdges());
|
|
featureFaces = identity(mesh.nFaces());
|
|
}
|
|
|
|
// Write obj files for debugging
|
|
dumpFeatures
|
|
(
|
|
mesh,
|
|
featureFaces,
|
|
featureEdges,
|
|
singleCellFeaturePoints,
|
|
multiCellFeaturePoints
|
|
);
|
|
|
|
|
|
|
|
// Read objects in time directory
|
|
IOobjectList objects(mesh, runTime.timeName());
|
|
|
|
// Read vol fields.
|
|
PtrList<volScalarField> vsFlds;
|
|
ReadFields(mesh, objects, vsFlds);
|
|
|
|
PtrList<volVectorField> vvFlds;
|
|
ReadFields(mesh, objects, vvFlds);
|
|
|
|
PtrList<volSphericalTensorField> vstFlds;
|
|
ReadFields(mesh, objects, vstFlds);
|
|
|
|
PtrList<volSymmTensorField> vsymtFlds;
|
|
ReadFields(mesh, objects, vsymtFlds);
|
|
|
|
PtrList<volTensorField> vtFlds;
|
|
ReadFields(mesh, objects, vtFlds);
|
|
|
|
// Read surface fields.
|
|
PtrList<surfaceScalarField> ssFlds;
|
|
ReadFields(mesh, objects, ssFlds);
|
|
|
|
PtrList<surfaceVectorField> svFlds;
|
|
ReadFields(mesh, objects, svFlds);
|
|
|
|
PtrList<surfaceSphericalTensorField> sstFlds;
|
|
ReadFields(mesh, objects, sstFlds);
|
|
|
|
PtrList<surfaceSymmTensorField> ssymtFlds;
|
|
ReadFields(mesh, objects, ssymtFlds);
|
|
|
|
PtrList<surfaceTensorField> stFlds;
|
|
ReadFields(mesh, objects, stFlds);
|
|
|
|
|
|
// Topo change container
|
|
directTopoChange meshMod(mesh.boundaryMesh().size());
|
|
|
|
// Mesh dualiser engine
|
|
meshDualiser dualMaker(mesh);
|
|
|
|
// Insert all commands into directTopoChange to create dual of mesh.
|
|
// This does all the hard work.
|
|
dualMaker.setRefinement
|
|
(
|
|
splitAllFaces,
|
|
featureFaces,
|
|
featureEdges,
|
|
singleCellFeaturePoints,
|
|
multiCellFeaturePoints,
|
|
meshMod
|
|
);
|
|
|
|
// Create mesh, return map from old to new mesh.
|
|
autoPtr<mapPolyMesh> map = meshMod.changeMesh(mesh, false);
|
|
|
|
// Update fields
|
|
mesh.updateMesh(map);
|
|
|
|
// Optionally inflate mesh
|
|
if (map().hasMotionPoints())
|
|
{
|
|
mesh.movePoints(map().preMotionPoints());
|
|
}
|
|
|
|
if (!overwrite)
|
|
{
|
|
runTime++;
|
|
}
|
|
else
|
|
{
|
|
mesh.setInstance(oldInstance);
|
|
}
|
|
|
|
Info<< "Writing dual mesh to " << runTime.timeName() << endl;
|
|
|
|
mesh.write();
|
|
|
|
Info<< "End\n" << endl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|