This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/solvers/compressible/sonicDyMFoam/sonicDyMFoam.C
2016-06-21 15:04:12 +02:00

150 lines
4.3 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration | Version: 4.0
\\ / A nd | Web: http://www.foam-extend.org
\\/ M anipulation | For copyright notice see file Copyright
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
Application
sonicDyMFoam
Description
Transient solver for trans-sonic/supersonic for laminar or turbulent
flow of a compressible gas with support for mesh motion and
topological changes.
Uses the flexible PIMPLE (PISO-SIMPLE) solution for time-resolved and
pseudo-transient simulations. The pressure-energy coupling is done
using the Rusche manoeuvre (isentropic compression/expansion).
Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected.
Updated from sonicFoamAutoMotion by Hrvoje Jasak
Author
Hrvoje Jasak, Wikki Ltd. All rights reserved.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "dynamicFvMesh.H"
#include "specie.H"
#include "basicPsiThermo.H"
#include "turbulenceModel.H"
#include "pimpleControl.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createDynamicFvMesh.H"
pimpleControl pimple(mesh);
# include "createFields.H"
# include "initContinuityErrs.H"
# include "createControls.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
# include "readControls.H"
# include "readFieldBounds.H"
# include "compressibleCourantNo.H"
# include "setDeltaT.H"
runTime++;
Info<< "deltaT = " << runTime.deltaT().value() << nl << endl;
Info<< "Time = " << runTime.timeName() << nl << endl;
bool meshChanged = mesh.update();
# include "volContinuity.H"
if (checkMeshCourantNo)
{
# include "meshCourantNo.H"
}
// Mesh motion update
if (meshChanged)
{
T.max(TMin);
p.max(pMin);
e == max(e, thermo.Cv()*TMin);
thermo.correct();
rho = thermo.rho();
if (correctPhi)
{
// # include "correctPhi.H"
}
}
if (meshChanged)
{
# include "compressibleCourantNo.H"
}
// --- PIMPLE loop
while (pimple.loop())
{
# include "rhoEqn.H"
# include "eEqn.H"
# include "UEqn.H"
// --- PISO loop
volScalarField rUA = 1.0/UEqn.A();
surfaceScalarField psisf = fvc::interpolate(psis);
surfaceScalarField rhof = fvc::interpolate(rho);
// Needs to be outside of loop since p is changing,
// but psi and rho are not
surfaceScalarField rhoReff = rhof - psisf*fvc::interpolate(p);
while (pimple.correct())
{
# include "pEqn.H"
}
turbulence->correct();
}
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return(0);
}
// ************************************************************************* //