56 lines
1.3 KiB
C
56 lines
1.3 KiB
C
{
|
|
// Solve the rothalpy equation
|
|
T.storePrevIter();
|
|
|
|
// Create relative velocity
|
|
Urel == U;
|
|
mrfZones.relativeVelocity(Urel);
|
|
|
|
// Create rotational velocity (= omega x r)
|
|
Urot = U - Urel;
|
|
|
|
// Calculate face velocity from absolute flux
|
|
surfaceScalarField rhof = fvc::interpolate(rho);
|
|
|
|
surfaceScalarField phiAbs
|
|
(
|
|
"phiAbs",
|
|
phi
|
|
);
|
|
mrfZones.absoluteFlux(rhof, phiAbs);
|
|
|
|
surfaceScalarField faceU("faceU", phiAbs/rhof);
|
|
|
|
fvScalarMatrix iEqn
|
|
(
|
|
fvm::ddt(rho, i)
|
|
+ fvm::div(phi, i)
|
|
- fvm::laplacian(turbulence->alphaEff(), i)
|
|
// u & gradP term (steady-state formulation)
|
|
+ fvm::SuSp((fvc::div(faceU, p, "div(U,p)") - fvc::div(faceU)*p)/i, i)
|
|
==
|
|
// Viscous heating: note sign (devRhoReff has a minus in it)
|
|
- (turbulence->devRhoReff() && fvc::grad(Urel))
|
|
);
|
|
|
|
iEqn.relax();
|
|
|
|
iEqn.solve();
|
|
|
|
// Calculate enthalpy out of rothalpy
|
|
h = i + 0.5*magSqr(Urot);
|
|
h.correctBoundaryConditions();
|
|
|
|
// Bound the enthalpy using TMin and TMax
|
|
volScalarField Cp = thermo.Cp();
|
|
|
|
h = Foam::min(h, TMax*Cp);
|
|
h = Foam::max(h, TMin*Cp);
|
|
h.correctBoundaryConditions();
|
|
|
|
// Re-initialise rothalpy based on limited enthalpy
|
|
i = h - 0.5*magSqr(Urot);
|
|
|
|
thermo.correct();
|
|
psis = thermo.psi()/thermo.Cp()*thermo.Cv();
|
|
}
|