This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/tutorials/viscoelastic/viscoelasticFluidFoam/XPP_SE/constant/viscoelasticProperties
2014-06-01 18:23:43 +02:00

119 lines
4.3 KiB
C++

/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | foam-extend: Open Source CFD |
| \\ / O peration | Version: 3.1 |
| \\ / A nd | Web: http://www.extend-project.de |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object viscoelasticProperties;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
/*
From:
VERBEETEN,W. M. H.; PETERS, G.W. M.; BAAIJENS, F. P. T. Differential constitutive
equations for polymer melts: The extended pom-pom model. Journal of Rheology,
SOR, v. 45, n. 4, p. 823-843, 2001.
BASF Lupolen 1810H LDPE melt
TABLE III. XPP parameters for fitting of the Lupolen 1810H melt.
Tr = 150 °C, ni = 2/q, Activation energy: E0 = 58.6 kJ/mol.
Maxwell parameters XPP model
i G0i (Pa) l0bi(s) qi l0bi/l0si ai
1 2.1662e4 1.0000e-1 1 3.5 0.350
2 9.9545e3 6.3096e-1 2 3.0 0.300
3 3.7775e3 3.9811e0 3 2.8 0.250
4 9.6955e2 2.5119e1 7 2.8 0.200
5 1.1834e2 1.5849e2 8 1.5 0.100
6 4.1614e0 1.0000e3 37 1.5 0.005
*/
rheology
{
type multiMode;
models
(
first
{
type XPP-SE;
rho rho [1 -3 0 0 0 0 0] 850;
etaS etaS [1 -1 -1 0 0 0 0] 0.0;
etaP etaP [1 -1 -1 0 0 0 0] 2166.2;
lambdaOb lambdaOb [0 0 1 0 0 0 0] 1.0e-1;
lambdaOs lambdaOs [0 0 1 0 0 0 0] 0.0285714;
alpha alpha [0 0 0 0 0 0 0] 0.35;
q q [0 0 0 0 0 0 0] 1;
}
second
{
type XPP-SE;
rho rho [1 -3 0 0 0 0 0] 850;
etaS etaS [1 -1 -1 0 0 0 0] 0.0;
etaP etaP [1 -1 -1 0 0 0 0] 6280.8913;
lambdaOb lambdaOb [0 0 1 0 0 0 0] 6.3096e-1;
lambdaOs lambdaOs [0 0 1 0 0 0 0] 0.21032;
alpha alpha [0 0 0 0 0 0 0] 0.3;
q q [0 0 0 0 0 0 0] 2;
}
third
{
type XPP-SE;
rho rho [1 -3 0 0 0 0 0] 850;
etaS etaS [1 -1 -1 0 0 0 0] 0.0;
etaP etaP [1 -1 -1 0 0 0 0] 15038.605;
lambdaOb lambdaOb [0 0 1 0 0 0 0] 3.9811e0;
lambdaOs lambdaOs [0 0 1 0 0 0 0] 1.4218214;
alpha alpha [0 0 0 0 0 0 0] 0.25;
q q [0 0 0 0 0 0 0] 3;
}
fourth
{
type XPP-SE;
rho rho [1 -3 0 0 0 0 0] 850;
etaS etaS [1 -1 -1 0 0 0 0] 0.0;
etaP etaP [1 -1 -1 0 0 0 0] 24354.126;
lambdaOb lambdaOb [0 0 1 0 0 0 0] 2.5119e1;
lambdaOs lambdaOs [0 0 1 0 0 0 0] 8.9710714;
alpha alpha [0 0 0 0 0 0 0] 0.2;
q q [0 0 0 0 0 0 0] 7;
}
fifth
{
type XPP-SE;
rho rho [1 -3 0 0 0 0 0] 850;
etaS etaS [1 -1 -1 0 0 0 0] 0.0;
etaP etaP [1 -1 -1 0 0 0 0] 18755.707;
lambdaOb lambdaOb [0 0 1 0 0 0 0] 1.5849e2;
lambdaOs lambdaOs [0 0 1 0 0 0 0] 105.66;
alpha alpha [0 0 0 0 0 0 0] 0.1;
q q [0 0 0 0 0 0 0] 8;
}
sixth
{
type XPP-SE;
rho rho [1 -3 0 0 0 0 0] 850;
etaS etaS [1 -1 -1 0 0 0 0] 0.0;
etaP etaP [1 -1 -1 0 0 0 0] 4161.4;
lambdaOb lambdaOb [0 0 1 0 0 0 0] 1.0e3;
lambdaOs lambdaOs [0 0 1 0 0 0 0] 666.66667;
alpha alpha [0 0 0 0 0 0 0] 0.005;
q q [0 0 0 0 0 0 0] 37;
}
);
}
// ************************************************************************* //