This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/utilities/mesh/manipulation/splitMeshRegions/splitMeshRegions.C
Henrik Rusche 67ab0b5abd Vanilla backport
- in FOAM library
updated containers
backported PackedBoolList, hashedWordList, nullObject, wordRe,
backported functions to
backported int32 support
backported tableReaders
backported Function1, TimeFunction1
backported dynamicCode (for codedBCs, ...) -- needs to be mapped out
advanced error macros (FatalIOErrorInFunction, ...) -- needs to be mapped out
backported IOobject::MUST_READ_IF_MODIFIED and added IOobject::READ_IF_PRESENT_IF_MODIFIED (only in FO)

- in postProcessing
backported IO FOs (partialWrite, removeRegisteredObject, writeDictionary, writeRegisteredObject)
backported field FOs (fieldCoordinateSystemTransform, fieldValues, nearWallFields, processorField, readFields, regionSizeDistribution, streamLine, wallBoundedStreamLine)
backported fvTools FOs (calcFvcDiv, calcFvcGrad, calcMag)
backported jobControl FOs (abortCalculation)
backported utilities FOs (ourantNo, Lambda2, Peclet, Q, codedFunctionObject, pressureTools, residuals, scalarTransport, setTimeStep, timeActivatedFileUpdate, turbulenceFields, vorticity, wallShearStress)
2018-02-16 15:07:55 +01:00

2030 lines
54 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration | Version: 4.0
\\ / A nd | Web: http://www.foam-extend.org
\\/ M anipulation | For copyright notice see file Copyright
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
Application
splitMeshRegions
Description
Splits mesh into multiple regions.
Each region is defined as a domain whose cells can all be reached by
cell-face-cell walking without crossing
- boundary faces
- additional faces from faceSet (-blockedFaces faceSet).
- any face in between differing cellZones (-cellZones)
Output is:
- volScalarField with regions as different scalars (-detectOnly) or
- mesh with multiple regions or
- mesh with cells put into cellZones (-makeCellZones)
Note:
- cellZonesOnly does not do a walk and uses the cellZones only. Use
this if you don't mind having disconnected domains in a single region.
This option requires all cells to be in one (and one only) cellZone.
- cellZonesFileOnly behaves like -cellZonesOnly but reads the cellZones
from the specified file. This allows one to explicitly specify the region
distribution and still have multiple cellZones per region.
- useCellZonesOnly does not do a walk and uses the cellZones only. Use
this if you don't mind having disconnected domains in a single region.
This option requires all cells to be in one (and one only) cellZone.
- Should work in parallel.
cellZones can differ on either side of processor boundaries in which case
the faces get moved from processor patch to directMapped patch. Not
very well tested.
- If a cell zone gets split into more than one region it can detect
the largest matching region (-sloppyCellZones). This will accept any
region that covers more than 50% of the zone. It has to be a subset
so cannot have any cells in any other zone.
- writes maps like decomposePar back to original mesh:
- pointRegionAddressing : for every point in this region the point in
the original mesh
- cellRegionAddressing : ,, cell ,, cell ,,
- faceRegionAddressing : ,, face ,, face in
the original mesh + 'turning index'. For a face in the same orientation
this is the original facelabel+1, for a turned face
this is -facelabel - 1
\*---------------------------------------------------------------------------*/
#include "SortableList.H"
#include "argList.H"
#include "regionSplit.H"
#include "fvMeshSubset.H"
#include "IOobjectList.H"
#include "volFields.H"
#include "faceSet.H"
#include "cellSet.H"
#include "directTopoChange.H"
#include "mapPolyMesh.H"
#include "removeCells.H"
#include "EdgeMap.H"
#include "syncTools.H"
#include "ReadFields.H"
#include "directMappedWallPolyPatch.H"
#include "zeroGradientFvPatchFields.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
template<class GeoField>
void addPatchFields(const fvMesh& mesh, const word& patchFieldType)
{
HashTable<const GeoField*> flds
(
mesh.objectRegistry::lookupClass<GeoField>()
);
for
(
typename HashTable<const GeoField*>::const_iterator iter =
flds.begin();
iter != flds.end();
++iter
)
{
const GeoField& fld = *iter();
typename GeoField::GeometricBoundaryField& bfld =
const_cast<typename GeoField::GeometricBoundaryField&>
(
fld.boundaryField()
);
label sz = bfld.size();
bfld.setSize(sz + 1);
bfld.set
(
sz,
GeoField::PatchFieldType::New
(
patchFieldType,
mesh.boundary()[sz],
fld.dimensionedInternalField()
)
);
}
}
// Remove last patch field
template<class GeoField>
void trimPatchFields(const fvMesh& mesh, const label nPatches)
{
HashTable<const GeoField*> flds
(
mesh.objectRegistry::lookupClass<GeoField>()
);
for
(
typename HashTable<const GeoField*>::const_iterator iter =
flds.begin();
iter != flds.end();
++iter
)
{
const GeoField& fld = *iter();
const_cast<typename GeoField::GeometricBoundaryField&>
(
fld.boundaryField()
).setSize(nPatches);
}
}
// Reorder patch field
template<class GeoField>
void reorderPatchFields(const fvMesh& mesh, const labelList& oldToNew)
{
HashTable<const GeoField*> flds
(
mesh.objectRegistry::lookupClass<GeoField>()
);
for
(
typename HashTable<const GeoField*>::const_iterator iter =
flds.begin();
iter != flds.end();
++iter
)
{
const GeoField& fld = *iter();
typename GeoField::GeometricBoundaryField& bfld =
const_cast<typename GeoField::GeometricBoundaryField&>
(
fld.boundaryField()
);
bfld.reorder(oldToNew);
}
}
// Adds patch if not yet there. Returns patchID.
label addPatch(fvMesh& mesh, const polyPatch& patch)
{
polyBoundaryMesh& polyPatches =
const_cast<polyBoundaryMesh&>(mesh.boundaryMesh());
label patchI = polyPatches.findPatchID(patch.name());
if (patchI != -1)
{
if (polyPatches[patchI].type() == patch.type())
{
// Already there
return patchI;
}
else
{
FatalErrorIn("addPatch(fvMesh&, const polyPatch*)")
<< "Already have patch " << patch.name()
<< " but of type " << patch.type()
<< exit(FatalError);
}
}
label insertPatchI = polyPatches.size();
label startFaceI = mesh.nFaces();
forAll (polyPatches, patchI)
{
const polyPatch& pp = polyPatches[patchI];
if (isA<processorPolyPatch>(pp))
{
insertPatchI = patchI;
startFaceI = pp.start();
break;
}
}
// Below is all quite a hack. Feel free to change once there is a better
// mechanism to insert and reorder patches.
// Clear local fields and e.g. polyMesh parallelInfo.
mesh.clearOut();
label sz = polyPatches.size();
fvBoundaryMesh& fvPatches = const_cast<fvBoundaryMesh&>(mesh.boundary());
Info<< "Inserting patch " << patch.name() << " to slot " << insertPatchI
<< " out of " << polyPatches.size() << endl;
// Add polyPatch at the end
polyPatches.setSize(sz + 1);
polyPatches.set
(
sz,
patch.clone
(
polyPatches,
insertPatchI, // index
0, // size
startFaceI // start
)
);
fvPatches.setSize(sz + 1);
fvPatches.set
(
sz,
fvPatch::New
(
polyPatches[sz], // point to newly added polyPatch
mesh.boundary()
)
);
addPatchFields<volScalarField>
(
mesh,
calculatedFvPatchField<scalar>::typeName
);
addPatchFields<volVectorField>
(
mesh,
calculatedFvPatchField<vector>::typeName
);
addPatchFields<volSphericalTensorField>
(
mesh,
calculatedFvPatchField<sphericalTensor>::typeName
);
addPatchFields<volSymmTensorField>
(
mesh,
calculatedFvPatchField<symmTensor>::typeName
);
addPatchFields<volTensorField>
(
mesh,
calculatedFvPatchField<tensor>::typeName
);
// Surface fields
addPatchFields<surfaceScalarField>
(
mesh,
calculatedFvPatchField<scalar>::typeName
);
addPatchFields<surfaceVectorField>
(
mesh,
calculatedFvPatchField<vector>::typeName
);
addPatchFields<surfaceSphericalTensorField>
(
mesh,
calculatedFvPatchField<sphericalTensor>::typeName
);
addPatchFields<surfaceSymmTensorField>
(
mesh,
calculatedFvPatchField<symmTensor>::typeName
);
addPatchFields<surfaceTensorField>
(
mesh,
calculatedFvPatchField<tensor>::typeName
);
// Create reordering list
// patches before insert position stay as is
labelList oldToNew(sz + 1);
for (label i = 0; i < insertPatchI; i++)
{
oldToNew[i] = i;
}
// patches after insert position move one up
for (label i = insertPatchI; i < sz; i++)
{
oldToNew[i] = i + 1;
}
// appended patch gets moved to insert position
oldToNew[sz] = insertPatchI;
// Shuffle into place
polyPatches.reorder(oldToNew);
fvPatches.reorder(oldToNew);
reorderPatchFields<volScalarField>(mesh, oldToNew);
reorderPatchFields<volVectorField>(mesh, oldToNew);
reorderPatchFields<volSphericalTensorField>(mesh, oldToNew);
reorderPatchFields<volSymmTensorField>(mesh, oldToNew);
reorderPatchFields<volTensorField>(mesh, oldToNew);
reorderPatchFields<surfaceScalarField>(mesh, oldToNew);
reorderPatchFields<surfaceVectorField>(mesh, oldToNew);
reorderPatchFields<surfaceSphericalTensorField>(mesh, oldToNew);
reorderPatchFields<surfaceSymmTensorField>(mesh, oldToNew);
reorderPatchFields<surfaceTensorField>(mesh, oldToNew);
return insertPatchI;
}
// Reorder and delete patches. Deleted. HJ, 22/May/2011
template<class GeoField>
void subsetVolFields
(
const fvMesh& mesh,
const fvMesh& subMesh,
const labelList& cellMap,
const labelList& faceMap,
const labelList& patchMap
)
{
// Real patch map passed by argument
// HJ, 22/May/2011
HashTable<const GeoField*> fields
(
mesh.objectRegistry::lookupClass<GeoField>()
);
forAllConstIter(typename HashTable<const GeoField*>, fields, iter)
{
const GeoField& fld = *iter();
Info<< "Mapping field " << fld.name() << endl;
tmp<GeoField> tSubFld
(
fvMeshSubset::meshToMesh
(
fld,
subMesh,
patchMap,
cellMap,
faceMap
)
);
// Hack: set value to 0 for introduced patches (since don't
// get initialised.
forAll (tSubFld().boundaryField(), patchI)
{
const fvPatchField<typename GeoField::value_type>& pfld =
tSubFld().boundaryField()[patchI];
if
(
isA<calculatedFvPatchField<typename GeoField::value_type> >
(pfld)
)
{
tSubFld().boundaryField()[patchI] ==
pTraits<typename GeoField::value_type>::zero;
}
}
// Store on subMesh
GeoField* subFld = tSubFld.ptr();
subFld->rename(fld.name());
subFld->writeOpt() = IOobject::AUTO_WRITE;
subFld->store();
}
}
template<class GeoField>
void subsetSurfaceFields
(
const fvMesh& mesh,
const fvMesh& subMesh,
const labelList& faceMap,
const labelList& patchMap
)
{
// Real patch map passed by argument
// HJ, 22/May/2011
HashTable<const GeoField*> fields
(
mesh.objectRegistry::lookupClass<GeoField>()
);
forAllConstIter(typename HashTable<const GeoField*>, fields, iter)
{
const GeoField& fld = *iter();
Info<< "Mapping field " << fld.name() << endl;
tmp<GeoField> tSubFld
(
fvMeshSubset::meshToMesh
(
fld,
subMesh,
patchMap,
faceMap
)
);
// Hack: set value to 0 for introduced patches (since don't
// get initialised.
forAll (tSubFld().boundaryField(), patchI)
{
const fvsPatchField<typename GeoField::value_type>& pfld =
tSubFld().boundaryField()[patchI];
if
(
isA<calculatedFvsPatchField<typename GeoField::value_type> >
(pfld)
)
{
tSubFld().boundaryField()[patchI] ==
pTraits<typename GeoField::value_type>::zero;
}
}
// Store on subMesh
GeoField* subFld = tSubFld.ptr();
subFld->rename(fld.name());
subFld->writeOpt() = IOobject::AUTO_WRITE;
subFld->store();
}
}
// Select all cells not in the region
labelList getNonRegionCells(const labelList& cellRegion, const label regionI)
{
DynamicList<label> nonRegionCells(cellRegion.size());
forAll (cellRegion, cellI)
{
if (cellRegion[cellI] != regionI)
{
nonRegionCells.append(cellI);
}
}
return nonRegionCells.shrink();
}
// Get per region-region interface the sizes. If sumParallel sums sizes.
// Returns interfaces as straight list for looping in identical order.
void getInterfaceSizes
(
const polyMesh& mesh,
const labelList& cellRegion,
const bool sumParallel,
edgeList& interfaces,
EdgeMap<label>& interfaceSizes
)
{
// Internal faces
// ~~~~~~~~~~~~~~
forAll (mesh.faceNeighbour(), faceI)
{
label ownRegion = cellRegion[mesh.faceOwner()[faceI]];
label neiRegion = cellRegion[mesh.faceNeighbour()[faceI]];
if (ownRegion != neiRegion)
{
edge interface
(
min(ownRegion, neiRegion),
max(ownRegion, neiRegion)
);
EdgeMap<label>::iterator iter = interfaceSizes.find(interface);
if (iter != interfaceSizes.end())
{
iter()++;
}
else
{
interfaceSizes.insert(interface, 1);
}
}
}
// Boundary faces
// ~~~~~~~~~~~~~~
// Neighbour cellRegion.
labelList coupledRegion(mesh.nFaces()-mesh.nInternalFaces());
forAll (coupledRegion, i)
{
label cellI = mesh.faceOwner()[i+mesh.nInternalFaces()];
coupledRegion[i] = cellRegion[cellI];
}
syncTools::swapBoundaryFaceList(mesh, coupledRegion, false);
forAll (coupledRegion, i)
{
label faceI = i+mesh.nInternalFaces();
label ownRegion = cellRegion[mesh.faceOwner()[faceI]];
label neiRegion = coupledRegion[i];
if (ownRegion != neiRegion)
{
edge interface
(
min(ownRegion, neiRegion),
max(ownRegion, neiRegion)
);
EdgeMap<label>::iterator iter = interfaceSizes.find(interface);
if (iter != interfaceSizes.end())
{
iter()++;
}
else
{
interfaceSizes.insert(interface, 1);
}
}
}
if (sumParallel && Pstream::parRun())
{
if (Pstream::master())
{
// Receive and add to my sizes
for
(
int slave = Pstream::firstSlave();
slave <= Pstream::lastSlave();
slave++
)
{
IPstream fromSlave(Pstream::blocking, slave);
EdgeMap<label> slaveSizes(fromSlave);
forAllConstIter(EdgeMap<label>, slaveSizes, slaveIter)
{
EdgeMap<label>::iterator masterIter =
interfaceSizes.find(slaveIter.key());
if (masterIter != interfaceSizes.end())
{
masterIter() += slaveIter();
}
else
{
interfaceSizes.insert(slaveIter.key(), slaveIter());
}
}
}
// Distribute
for
(
int slave = Pstream::firstSlave();
slave <= Pstream::lastSlave();
slave++
)
{
// Receive the edges using shared points from the slave.
OPstream toSlave(Pstream::blocking, slave);
toSlave << interfaceSizes;
}
}
else
{
// Send to master
{
OPstream toMaster(Pstream::blocking, Pstream::masterNo());
toMaster << interfaceSizes;
}
// Receive from master
{
IPstream fromMaster(Pstream::blocking, Pstream::masterNo());
fromMaster >> interfaceSizes;
}
}
}
// Make sure all processors have interfaces in same order
interfaces = interfaceSizes.toc();
if (sumParallel)
{
Pstream::scatter(interfaces);
}
}
// Create mesh for region. Mesh pointer not passed in: instead, mesh is
// written out (as polyMesh) and read in (as fvMesh)
// to allow for field mapping.
// HJ, 5/Apr/2011
autoPtr<mapPolyMesh> createRegionMesh
(
const labelList& cellRegion,
const EdgeMap<label>& interfaceToPatch,
const fvMesh& mesh,
const label regionI,
const word& regionName,
const word& newMeshInstance
)
{
// Neighbour cellRegion.
labelList coupledRegion(mesh.nFaces() - mesh.nInternalFaces());
forAll (coupledRegion, i)
{
label cellI = mesh.faceOwner()[i+mesh.nInternalFaces()];
coupledRegion[i] = cellRegion[cellI];
}
syncTools::swapBoundaryFaceList(mesh, coupledRegion, false);
// Topology change container. Start off from existing mesh.
directTopoChange meshMod(mesh);
// Cell remover engine
removeCells cellRemover(mesh);
// Select all but region cells
labelList cellsToRemove(getNonRegionCells(cellRegion, regionI));
// Find out which faces will get exposed. Note that this
// gets faces in mesh face order. So both regions will get same
// face in same order (important!)
labelList exposedFaces = cellRemover.getExposedFaces(cellsToRemove);
labelList exposedPatchIDs(exposedFaces.size());
forAll (exposedFaces, i)
{
label faceI = exposedFaces[i];
label ownRegion = cellRegion[mesh.faceOwner()[faceI]];
label neiRegion = -1;
if (mesh.isInternalFace(faceI))
{
neiRegion = cellRegion[mesh.faceNeighbour()[faceI]];
}
else
{
neiRegion = coupledRegion[faceI-mesh.nInternalFaces()];
}
label otherRegion = -1;
if (ownRegion == regionI && neiRegion != regionI)
{
otherRegion = neiRegion;
}
else if (ownRegion != regionI && neiRegion == regionI)
{
otherRegion = ownRegion;
}
else
{
FatalErrorIn("createRegionMesh(..)")
<< "Exposed face:" << faceI
<< " fc:" << mesh.faceCentres()[faceI]
<< " has owner region " << ownRegion
<< " and neighbour region " << neiRegion
<< " when handling region:" << regionI
<< exit(FatalError);
}
if (otherRegion != -1)
{
edge interface(regionI, otherRegion);
// Find the patch.
if (regionI < otherRegion)
{
exposedPatchIDs[i] = interfaceToPatch[interface];
}
else
{
exposedPatchIDs[i] = interfaceToPatch[interface] + 1;
}
}
}
// Remove faces
cellRemover.setRefinement
(
cellsToRemove,
exposedFaces,
exposedPatchIDs,
meshMod
);
autoPtr<polyMesh> newMesh;
autoPtr<mapPolyMesh> map = meshMod.makeMesh
(
newMesh,
IOobject
(
regionName,
newMeshInstance,
mesh.time(),
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh
);
polyBoundaryMesh& newPatches =
const_cast<polyBoundaryMesh&>(newMesh().boundaryMesh());
newPatches.checkParallelSync(true);
// Delete empty patches
// ~~~~~~~~~~~~~~~~~~~~
// Create reordering list to move patches-to-be-deleted to end
labelList oldToNew(newPatches.size(), -1);
label newI = 0;
Info<< "Deleting empty patches" << endl;
// Assumes all non-proc boundaries are on all processors!
forAll (newPatches, patchI)
{
const polyPatch& pp = newPatches[patchI];
if (!isA<processorPolyPatch>(pp))
{
if (returnReduce(pp.size(), sumOp<label>()) > 0)
{
oldToNew[patchI] = newI++;
}
}
}
// Same for processor patches (but need no reduction)
forAll (newPatches, patchI)
{
const polyPatch& pp = newPatches[patchI];
if (isA<processorPolyPatch>(pp) && pp.size())
{
oldToNew[patchI] = newI++;
}
}
const label nNewPatches = newI;
// Move all deleteable patches to the end
forAll (oldToNew, patchI)
{
if (oldToNew[patchI] == -1)
{
oldToNew[patchI] = newI++;
}
}
// Reorder polyPatches and trim empty patches from the end
// of the list
newPatches.reorder(oldToNew);
newPatches.setSize(nNewPatches);
// Write the mesh
Info<< "Writing new mesh" << endl;
newMesh().write();
// Write addressing files like decomposePar
Info<< "Writing addressing to base mesh" << endl;
labelIOList pointRegionAddressing
(
IOobject
(
"pointRegionAddressing",
newMesh().facesInstance(),
newMesh().meshSubDir,
newMesh(),
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
map().pointMap()
);
Info<< "Writing map " << pointRegionAddressing.name()
<< " from region" << regionI
<< " points back to base mesh." << endl;
pointRegionAddressing.write();
labelIOList faceRegionAddressing
(
IOobject
(
"faceRegionAddressing",
newMesh().facesInstance(),
newMesh().meshSubDir,
newMesh(),
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
newMesh().nFaces()
);
forAll (faceRegionAddressing, faceI)
{
// face + turning index. (see decomposePar)
// Is the face pointing in the same direction?
label oldFaceI = map().faceMap()[faceI];
if
(
map().cellMap()[newMesh().faceOwner()[faceI]]
== mesh.faceOwner()[oldFaceI]
)
{
faceRegionAddressing[faceI] = oldFaceI + 1;
}
else
{
faceRegionAddressing[faceI] = -(oldFaceI + 1);
}
}
Info<< "Writing map " << faceRegionAddressing.name()
<< " from region" << regionI
<< " faces back to base mesh." << endl;
faceRegionAddressing.write();
labelIOList cellRegionAddressing
(
IOobject
(
"cellRegionAddressing",
newMesh().facesInstance(),
newMesh().meshSubDir,
newMesh(),
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
map().cellMap()
);
Info<< "Writing map " << cellRegionAddressing.name()
<< " from region" << regionI
<< " cells back to base mesh." << endl;
cellRegionAddressing.write();
// Calculate and write boundary addressing
{
const polyBoundaryMesh& oldPatches = mesh.boundaryMesh();
const polyBoundaryMesh& newPatches = newMesh().boundaryMesh();
labelIOList boundaryRegionAddressing
(
IOobject
(
"boundaryRegionAddressing",
newMesh().facesInstance(),
newMesh().meshSubDir,
newMesh(),
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
labelList
(
newMesh().boundaryMesh().size(),
-1
)
);
Info<<"Number of new patches: " << nNewPatches <<endl;
forAll (boundaryRegionAddressing, patchID)
{
const word& curPatchName = newPatches[patchID].name();
forAll (oldPatches, oldPatchI)
{
if (oldPatches[oldPatchI].name() == curPatchName)
{
boundaryRegionAddressing[patchID] = oldPatchI;
}
}
}
Info<< "Writing map " << boundaryRegionAddressing.name()
<< " from region" << regionI
<< " faces back to base mesh." << endl;
boundaryRegionAddressing.write();
}
return map;
}
void createAndWriteRegion
(
const fvMesh& mesh,
const labelList& cellRegion,
const wordList& regionNames,
const EdgeMap<label>& interfaceToPatch,
const label regionI,
const word& newMeshInstance
)
{
Info<< "Creating mesh for region " << regionI
<< ' ' << regionNames[regionI] << endl;
// Create region mesh will write the mesh
// HJ, 19/May/2011
autoPtr<mapPolyMesh> map = createRegionMesh
(
cellRegion,
interfaceToPatch,
mesh,
regionI,
regionNames[regionI],
newMeshInstance
);
// Read in mesh as fvMesh for mapping. HJ, 19/May/2011
fvMesh newMesh
(
IOobject
(
regionNames[regionI],
newMeshInstance,
mesh.time(),
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
// Read in patch map. HJ, 22/May/2011
labelIOList boundaryRegionAddressing
(
IOobject
(
"boundaryRegionAddressing",
newMesh.facesInstance(),
newMesh.meshSubDir,
newMesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
Info<< "Mapping fields" << endl;
// Map existing fields: not needed
// Add subset fields
// Note: real patch map provided in place of identity map hack
// HJ, 22/May/2011
subsetVolFields<volScalarField>
(
mesh,
newMesh,
map().cellMap(),
map().faceMap(),
boundaryRegionAddressing
);
subsetVolFields<volVectorField>
(
mesh,
newMesh,
map().cellMap(),
map().faceMap(),
boundaryRegionAddressing
);
subsetVolFields<volSphericalTensorField>
(
mesh,
newMesh,
map().cellMap(),
map().faceMap(),
boundaryRegionAddressing
);
subsetVolFields<volSymmTensorField>
(
mesh,
newMesh,
map().cellMap(),
map().faceMap(),
boundaryRegionAddressing
);
subsetVolFields<volTensorField>
(
mesh,
newMesh,
map().cellMap(),
map().faceMap(),
boundaryRegionAddressing
);
subsetSurfaceFields<surfaceScalarField>
(
mesh,
newMesh,
map().faceMap(),
boundaryRegionAddressing
);
subsetSurfaceFields<surfaceVectorField>
(
mesh,
newMesh,
map().faceMap(),
boundaryRegionAddressing
);
subsetSurfaceFields<surfaceSphericalTensorField>
(
mesh,
newMesh,
map().faceMap(),
boundaryRegionAddressing
);
subsetSurfaceFields<surfaceSymmTensorField>
(
mesh,
newMesh,
map().faceMap(),
boundaryRegionAddressing
);
subsetSurfaceFields<surfaceTensorField>
(
mesh,
newMesh,
map().faceMap(),
boundaryRegionAddressing
);
// Moved map writing into createRegionMesh. HJ, 20/May/2011
newMesh.objectRegistry::write();
}
// Create for every region-region interface with non-zero size two patches.
// First one is for minimum region to maximum region.
// Note that patches get created in same order on all processors (if parallel)
// since looping over synchronised 'interfaces'.
EdgeMap<label> addRegionPatches
(
fvMesh& mesh,
const labelList& cellRegion,
const label nCellRegions,
const edgeList& interfaces,
const EdgeMap<label>& interfaceSizes,
const wordList& regionNames
)
{
// Check that all patches are present in same order.
mesh.boundaryMesh().checkParallelSync(true);
Info<< nl << "Adding patches" << nl << endl;
EdgeMap<label> interfaceToPatch(nCellRegions);
forAll (interfaces, interI)
{
const edge& e = interfaces[interI];
if (interfaceSizes[e] > 0)
{
const word inter1 = regionNames[e[0]] + "_to_" + regionNames[e[1]];
const word inter2 = regionNames[e[1]] + "_to_" + regionNames[e[0]];
directMappedWallPolyPatch patch1
(
inter1,
0, // overridden
0, // overridden
0, // overridden
regionNames[e[1]], // sampleRegion
directMappedPatchBase::NEARESTPATCHFACE,
inter2, // samplePatch
point::zero, // offset
mesh.boundaryMesh()
);
label patchI = addPatch(mesh, patch1);
directMappedWallPolyPatch patch2
(
inter2,
0,
0,
0,
regionNames[e[0]], // sampleRegion
directMappedPatchBase::NEARESTPATCHFACE,
inter1,
point::zero, // offset
mesh.boundaryMesh()
);
addPatch(mesh, patch2);
Info<< "For interface between region " << e[0]
<< " and " << e[1] << " added patch " << patchI
<< " " << mesh.boundaryMesh()[patchI].name()
<< endl;
interfaceToPatch.insert(e, patchI);
}
}
return interfaceToPatch;
}
// Find region that covers most of cell zone
label findCorrespondingRegion
(
const labelList& existingZoneID, // per cell the (unique) zoneID
const labelList& cellRegion,
const label nCellRegions,
const label zoneI,
const label minOverlapSize
)
{
// Per region the number of cells in zoneI
labelList cellsInZone(nCellRegions, 0);
forAll (cellRegion, cellI)
{
if (existingZoneID[cellI] == zoneI)
{
cellsInZone[cellRegion[cellI]]++;
}
}
Pstream::listCombineGather(cellsInZone, plusEqOp<label>());
Pstream::listCombineScatter(cellsInZone);
// Pick region with largest overlap of zoneI
label regionI = findMax(cellsInZone);
if (cellsInZone[regionI] < minOverlapSize)
{
// Region covers too little of zone. Not good enough.
regionI = -1;
}
else
{
// Check that region contains no cells that aren't in cellZone.
forAll (cellRegion, cellI)
{
if (cellRegion[cellI] == regionI && existingZoneID[cellI] != zoneI)
{
// cellI in regionI but not in zoneI
regionI = -1;
break;
}
}
// If one in error, all should be in error. Note that branch gets taken
// on all procs.
reduce(regionI, minOp<label>());
}
return regionI;
}
// Get zone per cell
// - non-unique zoning
// - coupled zones
void getZoneID
(
const polyMesh& mesh,
const cellZoneMesh& cellZones,
labelList& zoneID,
labelList& neiZoneID
)
{
// Existing zoneID
zoneID.setSize(mesh.nCells());
zoneID = -1;
forAll (cellZones, zoneI)
{
const cellZone& cz = cellZones[zoneI];
forAll (cz, i)
{
label cellI = cz[i];
if (zoneID[cellI] == -1)
{
zoneID[cellI] = zoneI;
}
else
{
FatalErrorIn("getZoneID(..)")
<< "Cell " << cellI << " with cell centre "
<< mesh.cellCentres()[cellI]
<< " is multiple zones. This is not allowed." << endl
<< "It is in zone " << cellZones[zoneID[cellI]].name()
<< " and in zone " << cellZones[zoneI].name()
<< exit(FatalError);
}
}
}
// Neighbour zoneID.
neiZoneID.setSize(mesh.nFaces()-mesh.nInternalFaces());
forAll (neiZoneID, i)
{
neiZoneID[i] = zoneID[mesh.faceOwner()[i+mesh.nInternalFaces()]];
}
syncTools::swapBoundaryFaceList(mesh, neiZoneID, false);
}
void matchRegions
(
const bool sloppyCellZones,
const polyMesh& mesh,
const label nCellRegions,
const labelList& cellRegion,
labelList& regionToZone,
wordList& regionNames,
labelList& zoneToRegion
)
{
const cellZoneMesh& cellZones = mesh.cellZones();
regionToZone.setSize(nCellRegions, -1);
regionNames.setSize(nCellRegions);
zoneToRegion.setSize(cellZones.size(), -1);
// Get current per cell zoneID
labelList zoneID(mesh.nCells(), -1);
labelList neiZoneID(mesh.nFaces()-mesh.nInternalFaces());
getZoneID(mesh, cellZones, zoneID, neiZoneID);
// Sizes per cellzone
labelList zoneSizes(cellZones.size(), 0);
{
List<wordList> zoneNames(Pstream::nProcs());
zoneNames[Pstream::myProcNo()] = cellZones.names();
Pstream::gatherList(zoneNames);
Pstream::scatterList(zoneNames);
forAll (zoneNames, procI)
{
if (zoneNames[procI] != zoneNames[0])
{
FatalErrorIn("matchRegions(..)")
<< "cellZones not synchronised across processors." << endl
<< "Master has cellZones " << zoneNames[0] << endl
<< "Processor " << procI
<< " has cellZones " << zoneNames[procI]
<< exit(FatalError);
}
}
forAll (cellZones, zoneI)
{
zoneSizes[zoneI] = returnReduce
(
cellZones[zoneI].size(),
sumOp<label>()
);
}
}
if (sloppyCellZones)
{
Info<< "Trying to match regions to existing cell zones;"
<< " region can be subset of cell zone." << nl << endl;
forAll (cellZones, zoneI)
{
label regionI = findCorrespondingRegion
(
zoneID,
cellRegion,
nCellRegions,
zoneI,
label(0.5*zoneSizes[zoneI]) // minimum overlap
);
if (regionI != -1)
{
Info<< "Sloppily matched region " << regionI
//<< " size " << regionSizes[regionI]
<< " to zone " << zoneI << " size " << zoneSizes[zoneI]
<< endl;
zoneToRegion[zoneI] = regionI;
regionToZone[regionI] = zoneI;
regionNames[regionI] = cellZones[zoneI].name();
}
}
}
else
{
Info<< "Trying to match regions to existing cell zones." << nl << endl;
forAll (cellZones, zoneI)
{
label regionI = findCorrespondingRegion
(
zoneID,
cellRegion,
nCellRegions,
zoneI,
1 // minimum overlap
);
if (regionI != -1)
{
zoneToRegion[zoneI] = regionI;
regionToZone[regionI] = zoneI;
regionNames[regionI] = cellZones[zoneI].name();
}
}
}
// Allocate region names for unmatched regions.
forAll (regionToZone, regionI)
{
if (regionToZone[regionI] == -1)
{
regionNames[regionI] = "domain" + Foam::name(regionI);
}
}
}
void writeCellToRegion(const fvMesh& mesh, const labelList& cellRegion)
{
// Write to manual decomposition option
{
labelIOList cellToRegion
(
IOobject
(
"cellToRegion",
mesh.facesInstance(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
cellRegion
);
cellToRegion.write();
Info<< "Writing region per cell file (for manual decomposition) to "
<< cellToRegion.objectPath() << nl << endl;
}
// Write for postprocessing
{
volScalarField cellToRegion
(
IOobject
(
"cellToRegion",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
mesh,
dimensionedScalar("zero", dimless, 0),
zeroGradientFvPatchScalarField::typeName
);
forAll (cellRegion, cellI)
{
cellToRegion[cellI] = cellRegion[cellI];
}
cellToRegion.write();
Info<< "Writing region per cell as volScalarField to "
<< cellToRegion.objectPath() << nl << endl;
}
}
// Main program:
int main(int argc, char *argv[])
{
argList::validOptions.insert("cellZones", "");
argList::validOptions.insert("cellZonesOnly", "");
argList::validOptions.insert("cellZonesFileOnly", "cellZonesName");
argList::validOptions.insert("blockedFaces", "faceSet");
argList::validOptions.insert("makeCellZones", "");
argList::validOptions.insert("largestOnly", "");
argList::validOptions.insert("insidePoint", "point");
argList::validOptions.insert("overwrite", "");
argList::validOptions.insert("detectOnly", "");
argList::validOptions.insert("sloppyCellZones", "");
# include "setRootCase.H"
# include "createTime.H"
runTime.functionObjects().off();
# include "createMesh.H"
const word oldInstance = mesh.pointsInstance();
word blockedFacesName;
if (args.optionFound("blockedFaces"))
{
blockedFacesName = args.option("blockedFaces");
Info<< "Reading blocked internal faces from faceSet "
<< blockedFacesName << nl << endl;
}
bool makeCellZones = args.optionFound("makeCellZones");
bool largestOnly = args.optionFound("largestOnly");
bool insidePoint = args.optionFound("insidePoint");
bool useCellZones = args.optionFound("cellZones");
bool useCellZonesOnly = args.optionFound("cellZonesOnly");
bool useCellZonesFile = args.optionFound("cellZonesFileOnly");
bool overwrite = args.optionFound("overwrite");
bool detectOnly = args.optionFound("detectOnly");
bool sloppyCellZones = args.optionFound("sloppyCellZones");
if
(
(useCellZonesOnly || useCellZonesFile)
&& (
blockedFacesName != word::null
|| useCellZones
)
)
{
FatalErrorIn(args.executable())
<< "You cannot specify both -cellZonesOnly or -cellZonesFileOnly"
<< " (which specify complete split)"
<< " in combination with -blockedFaces or -cellZones"
<< " (which imply a split based on topology)"
<< exit(FatalError);
}
if (insidePoint && largestOnly)
{
FatalErrorIn(args.executable())
<< "You cannot specify both -largestOnly"
<< " (keep region with most cells)"
<< " and -insidePoint (keep region containing point)"
<< exit(FatalError);
}
const cellZoneMesh& cellZones = mesh.cellZones();
// Existing zoneID
labelList zoneID(mesh.nCells(), -1);
// Neighbour zoneID
labelList neiZoneID(mesh.nFaces() - mesh.nInternalFaces());
getZoneID(mesh, cellZones, zoneID, neiZoneID);
// Determine per cell the region it belongs to
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// cellRegion is the labelList with the region per cell.
labelList cellRegion;
// Region per zone
labelList regionToZone;
// Name of region
wordList regionNames;
// Zone to region
labelList zoneToRegion;
label nCellRegions = 0;
if (useCellZonesOnly)
{
Info<< "Using current cellZones to split mesh into regions."
<< " This requires all"
<< " cells to be in one and only one cellZone." << nl << endl;
label unzonedCellI = findIndex(zoneID, -1);
if (unzonedCellI != -1)
{
FatalErrorIn(args.executable())
<< "For the cellZonesOnly option all cells "
<< "have to be in a cellZone." << endl
<< "Cell " << unzonedCellI
<< " at" << mesh.cellCentres()[unzonedCellI]
<< " is not in a cellZone. There might be more unzoned cells."
<< exit(FatalError);
}
cellRegion = zoneID;
nCellRegions = gMax(cellRegion) + 1;
regionToZone.setSize(nCellRegions);
regionNames.setSize(nCellRegions);
zoneToRegion.setSize(cellZones.size(), -1);
for (label regionI = 0; regionI < nCellRegions; regionI++)
{
regionToZone[regionI] = regionI;
zoneToRegion[regionI] = regionI;
regionNames[regionI] = cellZones[regionI].name();
}
}
else if (useCellZonesFile)
{
const word zoneFile = args.option("cellZonesFileOnly");
Info<< "Reading split from cellZones file " << zoneFile << endl
<< "This requires all"
<< " cells to be in one and only one cellZone." << nl << endl;
cellZoneMesh newCellZones
(
IOobject
(
zoneFile,
mesh.facesInstance(),
polyMesh::meshSubDir,
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
),
mesh
);
labelList newZoneID(mesh.nCells(), -1);
labelList newNeiZoneID(mesh.nFaces()-mesh.nInternalFaces());
getZoneID(mesh, newCellZones, newZoneID, newNeiZoneID);
label unzonedCellI = findIndex(newZoneID, -1);
if (unzonedCellI != -1)
{
FatalErrorIn(args.executable())
<< "For the cellZonesFileOnly option all cells "
<< "have to be in a cellZone." << endl
<< "Cell " << unzonedCellI
<< " at" << mesh.cellCentres()[unzonedCellI]
<< " is not in a cellZone. There might be more unzoned cells."
<< exit(FatalError);
}
cellRegion = newZoneID;
nCellRegions = gMax(cellRegion) + 1;
zoneToRegion.setSize(newCellZones.size(), -1);
regionToZone.setSize(nCellRegions);
regionNames.setSize(nCellRegions);
for (label regionI = 0; regionI < nCellRegions; regionI++)
{
regionToZone[regionI] = regionI;
zoneToRegion[regionI] = regionI;
regionNames[regionI] = newCellZones[regionI].name();
}
}
else
{
// Determine connected regions
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Mark additional faces that are blocked
boolList blockedFace;
// Read from faceSet
if (blockedFacesName.size())
{
faceSet blockedFaceSet(mesh, blockedFacesName);
Info<< "Read "
<< returnReduce(blockedFaceSet.size(), sumOp<label>())
<< " blocked faces from set " << blockedFacesName
<< nl << endl;
blockedFace.setSize(mesh.nFaces(), false);
forAllConstIter(faceSet, blockedFaceSet, iter)
{
blockedFace[iter.key()] = true;
}
}
// Imply from differing cellZones
if (useCellZones)
{
blockedFace.setSize(mesh.nFaces(), false);
for (label faceI = 0; faceI < mesh.nInternalFaces(); faceI++)
{
label own = mesh.faceOwner()[faceI];
label nei = mesh.faceNeighbour()[faceI];
if (zoneID[own] != zoneID[nei])
{
blockedFace[faceI] = true;
}
}
// Different cellZones on either side of processor patch.
forAll (neiZoneID, i)
{
label faceI = i+mesh.nInternalFaces();
if (zoneID[mesh.faceOwner()[faceI]] != neiZoneID[i])
{
blockedFace[faceI] = true;
}
}
}
// Do a topological walk to determine regions
regionSplit regions(mesh, blockedFace);
nCellRegions = regions.nRegions();
cellRegion.transfer(regions);
// Make up region names. If possible match them to existing zones.
matchRegions
(
sloppyCellZones,
mesh,
nCellRegions,
cellRegion,
regionToZone,
regionNames,
zoneToRegion
);
}
Info<< endl << "Number of regions:" << nCellRegions << nl << endl;
// Write decomposition to file
writeCellToRegion(mesh, cellRegion);
// Sizes per region
// ~~~~~~~~~~~~~~~~
labelList regionSizes(nCellRegions, 0);
forAll (cellRegion, cellI)
{
regionSizes[cellRegion[cellI]]++;
}
forAll (regionSizes, regionI)
{
reduce(regionSizes[regionI], sumOp<label>());
}
Info<< "Region\tCells" << nl
<< "------\t-----" << endl;
forAll (regionSizes, regionI)
{
Info<< regionI << '\t' << regionSizes[regionI] << nl;
}
Info<< endl;
// Print region to zone
Info<< "Region\tZone\tName" << nl
<< "------\t----\t----" << endl;
forAll (regionToZone, regionI)
{
Info<< regionI << '\t' << regionToZone[regionI] << '\t'
<< regionNames[regionI] << nl;
}
Info<< endl;
// Since we're going to mess with patches make sure all non-processor ones
// are on all processors.
mesh.boundaryMesh().checkParallelSync(true);
// Sizes of interface between regions. From pair of regions to number of
// faces.
edgeList interfaces;
EdgeMap<label> interfaceSizes;
getInterfaceSizes
(
mesh,
cellRegion,
true, // sum in parallel?
interfaces,
interfaceSizes
);
Info<< "Sizes inbetween regions:" << nl << nl
<< "Region\tRegion\tFaces" << nl
<< "------\t------\t-----" << endl;
forAll (interfaces, interI)
{
const edge& e = interfaces[interI];
Info<< e[0] << '\t' << e[1] << '\t' << interfaceSizes[e] << nl;
}
Info<< endl;
if (detectOnly)
{
return 0;
}
// Read objects in time directory
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
IOobjectList objects(mesh, runTime.timeName());
// Read vol fields.
PtrList<volScalarField> vsFlds;
ReadFields(mesh, objects, vsFlds);
PtrList<volVectorField> vvFlds;
ReadFields(mesh, objects, vvFlds);
PtrList<volSphericalTensorField> vstFlds;
ReadFields(mesh, objects, vstFlds);
PtrList<volSymmTensorField> vsymtFlds;
ReadFields(mesh, objects, vsymtFlds);
PtrList<volTensorField> vtFlds;
ReadFields(mesh, objects, vtFlds);
// Read surface fields.
PtrList<surfaceScalarField> ssFlds;
ReadFields(mesh, objects, ssFlds);
PtrList<surfaceVectorField> svFlds;
ReadFields(mesh, objects, svFlds);
PtrList<surfaceSphericalTensorField> sstFlds;
ReadFields(mesh, objects, sstFlds);
PtrList<surfaceSymmTensorField> ssymtFlds;
ReadFields(mesh, objects, ssymtFlds);
PtrList<surfaceTensorField> stFlds;
ReadFields(mesh, objects, stFlds);
Info<< endl;
// Remove any demand-driven fields ('S', 'V' etc)
mesh.clearOut();
if (nCellRegions == 1)
{
Info<< "Only one region. Doing nothing." << endl;
}
else if (makeCellZones)
{
Info<< "Putting cells into cellZones instead of splitting mesh."
<< endl;
// Check if region overlaps with existing zone. If so keep.
for (label regionI = 0; regionI < nCellRegions; regionI++)
{
label zoneI = regionToZone[regionI];
if (zoneI != -1)
{
Info<< " Region " << regionI << " : corresponds to existing"
<< " cellZone "
<< zoneI << ' ' << cellZones[zoneI].name() << endl;
}
else
{
// Create new cellZone.
labelList regionCells = findIndices(cellRegion, regionI);
word zoneName = "region" + Foam::name(regionI);
zoneI = cellZones.findZoneID(zoneName);
if (zoneI == -1)
{
zoneI = cellZones.size();
mesh.cellZones().setSize(zoneI+1);
mesh.cellZones().set
(
zoneI,
new cellZone
(
zoneName, // name
regionCells, // addressing
zoneI, // index
cellZones // cellZoneMesh
)
);
}
else
{
mesh.cellZones()[zoneI].clearAddressing();
mesh.cellZones()[zoneI] = regionCells;
}
Info<< " Region " << regionI << " : created new cellZone "
<< zoneI << ' ' << cellZones[zoneI].name() << endl;
}
}
mesh.cellZones().writeOpt() = IOobject::AUTO_WRITE;
if (!overwrite)
{
runTime++;
mesh.setInstance(runTime.timeName());
}
else
{
mesh.setInstance(oldInstance);
}
Info<< "Writing cellZones as new mesh to time " << runTime.timeName()
<< nl << endl;
mesh.write();
// Write cellSets for convenience
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Info<< "Writing cellSets corresponding to cellZones." << nl << endl;
forAll (cellZones, zoneI)
{
const cellZone& cz = cellZones[zoneI];
cellSet(mesh, cz.name(), labelHashSet(cz)).write();
}
}
else
{
// Add patches for interfaces
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
// Add all possible patches. Empty ones get filtered later on.
Info<< nl << "Adding patches" << nl << endl;
EdgeMap<label> interfaceToPatch
(
addRegionPatches
(
mesh,
cellRegion,
nCellRegions,
interfaces,
interfaceSizes,
regionNames
)
);
if (!overwrite)
{
runTime++;
}
// Create regions
// ~~~~~~~~~~~~~~
if (insidePoint)
{
point insidePoint(args.optionLookup("insidePoint")());
label regionI = -1;
label cellI = mesh.findCell(insidePoint);
Info<< nl << "Found point " << insidePoint << " in cell " << cellI
<< endl;
if (cellI != -1)
{
regionI = cellRegion[cellI];
}
reduce(regionI, maxOp<label>());
Info<< nl
<< "Subsetting region " << regionI
<< " containing point " << insidePoint << endl;
if (regionI == -1)
{
FatalErrorIn(args.executable())
<< "Point " << insidePoint
<< " is not inside the mesh." << nl
<< "Bounding box of the mesh:" << mesh.bounds()
<< exit(FatalError);
}
createAndWriteRegion
(
mesh,
cellRegion,
regionNames,
interfaceToPatch,
regionI,
(overwrite ? oldInstance : runTime.timeName())
);
}
else if (largestOnly)
{
label regionI = findMax(regionSizes);
Info<< nl
<< "Subsetting region " << regionI
<< " of size " << regionSizes[regionI] << endl;
createAndWriteRegion
(
mesh,
cellRegion,
regionNames,
interfaceToPatch,
regionI,
(overwrite ? oldInstance : runTime.timeName())
);
}
else
{
// Split all
for (label regionI = 0; regionI < nCellRegions; regionI++)
{
Info<< nl
<< "Region " << regionI << nl
<< "-------- " << endl;
createAndWriteRegion
(
mesh,
cellRegion,
regionNames,
interfaceToPatch,
regionI,
(overwrite ? oldInstance : runTime.timeName())
);
}
}
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //