This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/solvers/solidMechanics/elasticGravitySolidFoam/elasticGravitySolidFoam.C
2013-07-18 10:15:54 +02:00

168 lines
4.4 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2004-2007 Hrvoje Jasak
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Application
elasticGravitySolidFoam
Description
Transient/steady-state segregated finite-volume solver for small strain
elastic solid bodies.
Displacement field U is solved for using a total Lagrangian approach,
also generating the strain tensor field epsilon and stress tensor
field sigma.
With optional multi-material solid interface correction ensuring
correct tractions on multi-material interfaces.
Graivty added as a body force.
Author
Philip Cardiff
multi-material by Tukovic et al. 2012
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "rheologyModel.H"
#include "solidInterface.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
# include "createFields.H"
# include "readDivSigmaExpMethod.H"
# include "createSolidInterface.H"
# include "readGravity.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nCalculating displacement field\n" << endl;
while(runTime.loop())
{
Info<< "Time: " << runTime.timeName() << nl << endl;
# include "readStressedFoamControls.H"
int iCorr = 0;
scalar initialResidual = 0;
lduMatrix::solverPerformance solverPerf;
scalar relativeResidual = GREAT;
lduMatrix::debug=0;
do
{
U.storePrevIter();
# include "calculateDivSigmaExp.H"
//- linear momentum equation
fvVectorMatrix UEqn
(
fvm::d2dt2(rho, U)
==
fvm::laplacian(2*muf + lambdaf, U, "laplacian(DU,U)")
+ divSigmaExp
+ rho*gravity
);
if(solidInterfaceCorr)
{
solidInterfacePtr->correct(UEqn);
}
solverPerf = UEqn.solve();
if(iCorr == 0)
{
initialResidual = solverPerf.initialResidual();
}
U.relax();
if(solidInterfaceCorr)
{
gradU = solidInterfacePtr->grad(U);
}
else
{
gradU = fvc::grad(U);
}
# include "calculateRelativeResidual.H"
Info << "\tTime " << runTime.value()
<< ", Corrector " << iCorr
<< ", Solving for " << U.name()
<< " using " << solverPerf.solverName()
<< ", residual = " << solverPerf.initialResidual()
<< ", relative residual = " << relativeResidual << endl;
}
while
(
//solverPerf.initialResidual() > convergenceTolerance
relativeResidual > convergenceTolerance
&&
++iCorr < nCorr
);
Info << nl << "Time " << runTime.value() << ", Solving for " << U.name()
<< ", Initial residual = " << initialResidual
<< ", Final residual = " << solverPerf.initialResidual()
<< ", Relative residual = " << relativeResidual
<< ", No outer iterations " << iCorr
<< nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< endl;
lduMatrix::debug=0;
# include "calculateEpsilonSigma.H"
# include "writeFields.H"
Info<< "ExecutionTime = "
<< runTime.elapsedCpuTime()
<< " s\n\n" << endl;
}
Info<< "End\n" << endl;
return(0);
}
// ************************************************************************* //