This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/solvers/solidMechanics/utilities/calculateCourantNumber/calculateCourantNumber.C
2016-06-21 15:04:12 +02:00

123 lines
3.7 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration | Version: 4.0
\\ / A nd | Web: http://www.foam-extend.org
\\/ M anipulation | For copyright notice see file Copyright
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
Application
calculateCourantNumber
Description
Simple utility which calculate the Courant number for solid mechanics
models.
Author
Philip Cardiff UCD
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "constitutiveModel.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createMesh.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nCalculating Courant number\n" << endl;
// Calculate Courant number for every face
// Mechanical properties
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedVector("zero", dimLength, vector::zero)
);
volSymmTensorField sigma
(
IOobject
(
"sigma",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedSymmTensor("zero", dimForce/dimArea, symmTensor::zero)
);
constitutiveModel rheology(sigma, U);
volScalarField mu = rheology.mu();
volScalarField lambda = rheology.lambda();
volScalarField rho = rheology.rho();
surfaceScalarField Ef =
fvc::interpolate(mu*(3*lambda + 2*mu)/(lambda+mu), "E");
surfaceScalarField nuf = fvc::interpolate(lambda/(2*(lambda+mu)), "nu");
surfaceScalarField rhof = fvc::interpolate(rho);
surfaceScalarField waveVelocity =
Foam::sqrt(Ef*(1 - nuf)/(rhof*(1 + nuf)*(1 - 2*nuf)));
// Courant number
scalarField Co =
waveVelocity.internalField()*runTime.deltaT().value()
*mesh.surfaceInterpolation::deltaCoeffs().internalField();
// Calculate required time-step for a Courant number of 1.0
scalar requiredDeltaT = 1.0 /
gMax
(
mesh.surfaceInterpolation::deltaCoeffs().internalField()
*waveVelocity.internalField()
);
scalar averageCo = gAverage(Co);
scalar maxCo = gMax(Co);
scalar averageWaveVel = gAverage(waveVelocity);
scalar maxWaveVel = gMax(waveVelocity);
Info<< "\nCourant Number\n\tmean: " << averageCo
<< "\n\tmax: " << maxCo << nl
<< "Wave velocity magnitude\n\tmean " << averageWaveVel
<< "\n\tmax: " << maxWaveVel << nl
<< "Time step required for a maximum Courant number of 1.0 is "
<< requiredDeltaT << endl;
Info<< "\nEnd\n" << endl;
return(0);
}
// ************************************************************************* //