This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/solvers/overset/icoDyMOversetFoam/icoDyMOversetFoam.C

167 lines
5 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration | Version: 4.0
\\ / A nd | Web: http://www.foam-extend.org
\\/ M anipulation | For copyright notice see file Copyright
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
Application
icoDyMOversetFoam
Description
Transient solver for incompressible, laminar flow of Newtonian fluids
with dynamic mesh and overset mesh support.
Author
Hrvoje Jasak, Wikki Ltd. All rights reserved
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "dynamicFvMesh.H"
#include "oversetMesh.H"
#include "oversetFvPatchFields.H"
#include "oversetAdjustPhi.H"
#include "globalOversetAdjustPhi.H"
#include "pisoControl.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createDynamicFvMesh.H"
pisoControl piso(mesh);
# include "initContinuityErrs.H"
# include "initTotalVolume.H"
# include "createControls.H"
# include "createFields.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
# include "readControls.H"
# include "checkTotalVolume.H"
// Make the fluxes absolute
fvc::makeAbsolute(phi, U);
runTime++;
Info<< "Time = " << runTime.timeName() << nl << endl;
bool meshChanged = mesh.update();
reduce(meshChanged, orOp<bool>());
# include "createOversetMasks.H"
if (correctPhi && (mesh.moving() || meshChanged))
{
# include "correctPhi.H"
}
// Make the fluxes relative to the mesh motion
fvc::makeRelative(phi, U);
# include "oversetCourantNo.H"
# include "setDeltaT.H"
if (mesh.moving() && checkMeshCourantNo)
{
# include "meshCourantNo.H"
}
# include "UEqn.H"
// --- PISO loop
while (piso.correct())
{
p.boundaryField().updateCoeffs();
rAU = 1.0/UEqn.A();
oversetFvPatchScalarField::oversetInterpolate(rAU); // Overset update
U = rAU*UEqn.H();
oversetFvPatchVectorField::oversetInterpolate(U); // Overset update
phi = fvc::interpolate(U) & mesh.Sf();
// Adjust overset fluxes
oversetAdjustPhi(phi, U); // Fringe flux adjustment
globalOversetAdjustPhi(phi, U, p); // Global flux adjustment
while (piso.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvm::laplacian(rAU, p) == fvc::div(phi)
);
// Adjust non-orthogonal fringe fluxes if necessary
om.correctNonOrthoFluxes(pEqn, U);
pEqn.setReference(pRefCell, pRefValue);
pEqn.solve
(
mesh.solutionDict().solver(p.select(piso.finalInnerIter()))
);
if (piso.finalNonOrthogonalIter())
{
phi -= pEqn.flux();
}
// Perform overset interpolation (after flux reconstruction)
oversetFvPatchScalarField::oversetInterpolate(p);
}
# include "oversetContinuityErrs.H"
U -= rAU*fvc::grad(p);
U.correctBoundaryConditions();
oversetFvPatchVectorField::oversetInterpolate(U); // Overset update
// Note: if implicit fringe is switched on, we are doing the
// interpolation twice (once in correctBoundaryConditions and once
// in oversetInterpolate). Reorganize. VV, 4/Oct/2016.
// Make the fluxes relative to the mesh motion
fvc::makeRelative(phi, U);
}
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return(0);
}
// ************************************************************************* //