229 lines
6.4 KiB
C
229 lines
6.4 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration |
|
|
\\ / A nd | Copyright held by original author
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 2 of the License, or (at your
|
|
option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM; if not, write to the Free Software Foundation,
|
|
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
Application
|
|
potentialIbFoam
|
|
|
|
Description
|
|
Potential flow solver with immersed boundary support.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "fvCFD.H"
|
|
#include "immersedBoundaryFvPatch.H"
|
|
#include "immersedBoundaryAdjustPhi.H"
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
argList::validOptions.insert("writep", "");
|
|
|
|
# include "setRootCase.H"
|
|
|
|
# include "createTime.H"
|
|
# include "createMesh.H"
|
|
# include "createIbMasks.H"
|
|
# include "createFields.H"
|
|
# include "readSIMPLEControls.H"
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
Info<< nl << "Calculating potential flow" << endl;
|
|
|
|
// Do correctors over the complete set
|
|
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
|
{
|
|
phi = faceIbMask*(linearInterpolate(U) & mesh.Sf());
|
|
|
|
// Adjust immersed boundary fluxes
|
|
immersedBoundaryAdjustPhi(phi, U);
|
|
|
|
// Adjust fluxes
|
|
adjustPhi(phi, U, p);
|
|
|
|
p.storePrevIter();
|
|
|
|
fvScalarMatrix pEqn
|
|
(
|
|
fvm::laplacian
|
|
(
|
|
dimensionedScalar
|
|
(
|
|
"1",
|
|
dimTime/p.dimensions()*dimensionSet(0, 2, -2, 0, 0),
|
|
1
|
|
),
|
|
p
|
|
)
|
|
==
|
|
fvc::div(phi)
|
|
);
|
|
|
|
pEqn.setReference(pRefCell, pRefValue);
|
|
pEqn.solve();
|
|
|
|
// Correct the flux
|
|
phi -= pEqn.flux();
|
|
|
|
if (nonOrth != nNonOrthCorr)
|
|
{
|
|
p.relax();
|
|
}
|
|
|
|
Info<< "p min " << gMin(p.internalField())
|
|
<< " max " << gMax(p.internalField())
|
|
<< " masked min "
|
|
<< gMin(cellIbMask.internalField()*p.internalField())
|
|
<< " max "
|
|
<< gMax(cellIbMask.internalField()*p.internalField())
|
|
<< endl;
|
|
|
|
Info<< "continuity error = "
|
|
<< mag
|
|
(
|
|
fvc::div(faceIbMask*phi)
|
|
)().weightedAverage(mesh.V()).value()
|
|
<< endl;
|
|
|
|
Info<< "Contour continuity error = "
|
|
<< mag(sum(phi.boundaryField()))
|
|
<< endl;
|
|
|
|
U = fvc::reconstruct(phi);
|
|
U.correctBoundaryConditions();
|
|
|
|
Info<< "Interpolated U error = "
|
|
<< (
|
|
sqrt
|
|
(
|
|
sum
|
|
(
|
|
sqr
|
|
(
|
|
faceIbMask*
|
|
(
|
|
fvc::interpolate(U) & mesh.Sf()
|
|
)
|
|
- phi
|
|
)
|
|
)
|
|
)/sum(mesh.magSf())
|
|
).value()
|
|
<< endl;
|
|
}
|
|
|
|
// Calculate velocity magnitude
|
|
{
|
|
volScalarField magU = cellIbMask*mag(U);
|
|
|
|
Info << "IB-masked mag(U): max: " << gMax(magU.internalField())
|
|
<< " min: " << gMin(magU.internalField()) << endl;
|
|
}
|
|
|
|
// Force the write
|
|
U.write();
|
|
phi.write();
|
|
|
|
cellIbMask.write();
|
|
cellIbMaskExt.write();
|
|
|
|
if (args.optionFound("writep"))
|
|
{
|
|
// Find reference patch
|
|
label refPatch = -1;
|
|
scalar maxMagU = 0;
|
|
|
|
// Go through all velocity patches and find the one that fixes
|
|
// velocity to the largest value
|
|
|
|
forAll (U.boundaryField(), patchI)
|
|
{
|
|
const fvPatchVectorField& Upatch = U.boundaryField()[patchI];
|
|
|
|
if (Upatch.fixesValue())
|
|
{
|
|
// Calculate mean velocity
|
|
scalar u = sum(mag(Upatch));
|
|
label patchSize = Upatch.size();
|
|
|
|
reduce(u, sumOp<scalar>());
|
|
reduce(patchSize, sumOp<label>());
|
|
|
|
if (patchSize > 0)
|
|
{
|
|
scalar curMag = u/patchSize;
|
|
|
|
if (curMag > maxMagU)
|
|
{
|
|
refPatch = patchI;
|
|
|
|
maxMagU = curMag;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (refPatch > -1)
|
|
{
|
|
// Calculate reference pressure
|
|
const fvPatchVectorField& Upatch = U.boundaryField()[refPatch];
|
|
const fvPatchScalarField& pPatch = p.boundaryField()[refPatch];
|
|
|
|
scalar patchE = sum(mag(pPatch + 0.5*magSqr(Upatch)));
|
|
label patchSize = Upatch.size();
|
|
|
|
reduce(patchE, sumOp<scalar>());
|
|
reduce(patchSize, sumOp<label>());
|
|
|
|
scalar e = patchE/patchSize;
|
|
|
|
|
|
Info<< "Using reference patch " << refPatch
|
|
<< " with mag(U) = " << maxMagU
|
|
<< " p + 0.5*U^2 = " << e << endl;
|
|
|
|
p.internalField() = e - 0.5*magSqr(U.internalField());
|
|
p.correctBoundaryConditions();
|
|
}
|
|
else
|
|
{
|
|
Info<< "No reference patch found. Writing potential function"
|
|
<< endl;
|
|
}
|
|
|
|
p.write();
|
|
}
|
|
|
|
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
|
|
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
|
|
<< nl << endl;
|
|
|
|
Info<< "End\n" << endl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|