154 lines
4.3 KiB
C
154 lines
4.3 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | foam-extend: Open Source CFD
|
|
\\ / O peration |
|
|
\\ / A nd | For copyright notice see file Copyright
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of foam-extend.
|
|
|
|
foam-extend is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation, either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
foam-extend is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Application
|
|
channelFoam
|
|
|
|
Description
|
|
Incompressible LES solver for flow in a channel.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "fvCFD.H"
|
|
#include "singlePhaseTransportModel.H"
|
|
#include "LESModel.H"
|
|
#include "IFstream.H"
|
|
#include "OFstream.H"
|
|
#include "Random.H"
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
#include "setRootCase.H"
|
|
#include "createTime.H"
|
|
#include "createMesh.H"
|
|
#include "readTransportProperties.H"
|
|
#include "createFields.H"
|
|
#include "initContinuityErrs.H"
|
|
#include "createGradP.H"
|
|
|
|
Info<< "\nStarting time loop\n" << endl;
|
|
|
|
while (runTime.loop())
|
|
{
|
|
Info<< "Time = " << runTime.timeName() << nl << endl;
|
|
|
|
#include "readPISOControls.H"
|
|
|
|
#include "CourantNo.H"
|
|
|
|
sgsModel->correct();
|
|
|
|
fvVectorMatrix UEqn
|
|
(
|
|
fvm::ddt(U)
|
|
+ fvm::div(phi, U)
|
|
+ sgsModel->divDevBeff(U)
|
|
==
|
|
flowDirection*gradP
|
|
);
|
|
|
|
if (momentumPredictor)
|
|
{
|
|
solve(UEqn == -fvc::grad(p));
|
|
}
|
|
|
|
|
|
// --- PISO loop
|
|
|
|
volScalarField rUA = 1.0/UEqn.A();
|
|
|
|
for (int corr = 0; corr < nCorr; corr++)
|
|
{
|
|
U = rUA*UEqn.H();
|
|
phi = (fvc::interpolate(U) & mesh.Sf())
|
|
+ fvc::ddtPhiCorr(rUA, U, phi);
|
|
|
|
adjustPhi(phi, U, p);
|
|
|
|
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
|
|
{
|
|
fvScalarMatrix pEqn
|
|
(
|
|
fvm::laplacian(rUA, p) == fvc::div(phi)
|
|
);
|
|
|
|
pEqn.setReference(pRefCell, pRefValue);
|
|
|
|
if (corr == nCorr-1 && nonOrth == nNonOrthCorr)
|
|
{
|
|
pEqn.solve(mesh.solutionDict().solver(p.name() + "Final"));
|
|
}
|
|
else
|
|
{
|
|
pEqn.solve(mesh.solutionDict().solver(p.name()));
|
|
}
|
|
|
|
if (nonOrth == nNonOrthCorr)
|
|
{
|
|
phi -= pEqn.flux();
|
|
}
|
|
}
|
|
|
|
#include "continuityErrs.H"
|
|
|
|
U -= rUA*fvc::grad(p);
|
|
U.correctBoundaryConditions();
|
|
}
|
|
|
|
|
|
// Correct driving force for a constant mass flow rate
|
|
|
|
// Extract the velocity in the flow direction
|
|
dimensionedScalar magUbarStar =
|
|
(flowDirection & U)().weightedAverage(mesh.V());
|
|
|
|
// Calculate the pressure gradient increment needed to
|
|
// adjust the average flow-rate to the correct value
|
|
dimensionedScalar gragPplus =
|
|
(magUbar - magUbarStar)/rUA.weightedAverage(mesh.V());
|
|
|
|
U += flowDirection*rUA*gragPplus;
|
|
|
|
gradP += gragPplus;
|
|
|
|
Info<< "Uncorrected Ubar = " << magUbarStar.value() << tab
|
|
<< "pressure gradient = " << gradP.value() << endl;
|
|
|
|
runTime.write();
|
|
|
|
#include "writeGradP.H"
|
|
|
|
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
|
|
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
|
|
<< nl << endl;
|
|
}
|
|
|
|
Info<< "End\n" << endl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|