This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/solvers/combustion/PDRFoam/PDRModels/dragModels/basic/basic.H

166 lines
4.4 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright held by original author
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Class
Foam::PDRDragModels::basic
Description
Basic sub-grid obstacle drag model.
Details supplied by J Puttock 2/7/06.
<b> Sub-grid drag term </b>
The resistance term (force per unit of volume) is given by:
\f[
R = -\frac{1}{2} \rho \vert \dwea{\vec{U}} \vert \dwea{\vec{U}}.D
\f]
where:
\f$ D \f$ is the tensor field "CR" in \f$ m^{-1} \f$
This is term is treated implicitly in UEqn.H
<b> Sub-grid turbulence generation </b>
The turbulence source term \f$ G_{R} \f$ occurring in the
\f$ \kappa-\epsilon \f$ equations for the generation of turbulence due
to interaction with unresolved obstacles :
\f$ G_{R} = C_{s}\beta_{\nu}
\mu_{eff} A_{w}^{2}(\dwea{\vec{U}}-\dwea{\vec{U}_{s}})^2 + \frac{1}{2}
\rho \vert \dwea{\vec{U}} \vert \dwea{\vec{U}}.T.\dwea{\vec{U}} \f$
where:
\f$ C_{s} \f$ = 1
\f$ \beta_{\nu} \f$ is the volume porosity (file "betav").
\f$ \mu_{eff} \f$ is the effective viscosity.
\f$ A_{w}^{2}\f$ is the obstacle surface area per unit of volume
(file "Aw").
\f$ \dwea{\vec{U}_{s}} \f$ is the slip velocity and is considered
\f$ \frac{1}{2}. \dwea{\vec{U}} \f$.
\f$ T \f$ is a tensor in the file CT.
The term \f$ G_{R} \f$ is treated explicitly in the \f$ \kappa-\epsilon
\f$ Eqs in the \link PDRkEpsilon.C \endlink file.
SourceFiles
basic.C
\*---------------------------------------------------------------------------*/
#ifndef basic_H
#define basic_H
#include "PDRDragModel.H"
#include "XiEqModel.H"
namespace Foam
{
namespace PDRDragModels
{
/*---------------------------------------------------------------------------*\
Class basic Declaration
\*---------------------------------------------------------------------------*/
class basic
:
public PDRDragModel
{
// Private data
dimensionedScalar Csu;
dimensionedScalar Csk;
volScalarField Aw2_;
volSymmTensorField CR_;
volSymmTensorField CT_;
// Private Member Functions
//- Disallow copy construct
basic(const basic&);
//- Disallow default bitwise assignment
void operator=(const basic&);
public:
//- Runtime type information
TypeName("basic");
// Constructors
//- Construct from components
basic
(
const dictionary& PDRProperties,
const compressible::RASModel& turbulence,
const volScalarField& rho,
const volVectorField& U,
const surfaceScalarField& phi
);
// Destructor
virtual ~basic();
// Member Functions
//- Return the momentum drag coefficient
virtual tmp<volSymmTensorField> Dcu() const;
//- Return the momentum drag turbulence generation rate
virtual tmp<volScalarField> Gk() const;
//- Update properties from given dictionary
virtual bool read(const dictionary& PDRProperties);
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace PDRDragModels
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //