271 lines
8.2 KiB
C
271 lines
8.2 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | foam-extend: Open Source CFD
|
|
\\ / O peration |
|
|
\\ / A nd | For copyright notice see file Copyright
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of foam-extend.
|
|
|
|
foam-extend is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation, either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
foam-extend is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Application
|
|
elasticOrthoAcpSolidFoam
|
|
|
|
Description
|
|
Arbitrary crack propagation (ACP) solver
|
|
allowing orthotropic material properties.
|
|
|
|
Please cite:
|
|
Cardiff P, Karac A & Ivankovic A, A Large Strain Finite Volume Method for
|
|
Orthotropic Bodies with General Material Orientations, Computer Methods
|
|
in Applied Mechanics & Engineering, Sep 2013,
|
|
http://dx.doi.org/10.1016/j.cma.2013.09.008.
|
|
|
|
Carolan D, Tuković Z, Murphy N, Ivankovic A, Arbitrary crack propagation
|
|
in multi-phase materials using the finite volume method, Computational
|
|
Materials Science, 2013, http://dx.doi.org/10.1016/j.commatsci.2012.11.049.
|
|
|
|
Author
|
|
Philip Cardiff UCD
|
|
ACP by Tukovic FSB and Carolan UCD
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "fvCFD.H"
|
|
#include "constitutiveModel.H"
|
|
//#include "componentReferenceList.H"
|
|
#include "crackerFvMesh.H"
|
|
#include "processorPolyPatch.H"
|
|
#include "SortableList.H"
|
|
#include "solidInterface.H"
|
|
#include "solidCohesiveFvPatchVectorField.H"
|
|
#include "solidCohesiveFixedModeMixFvPatchVectorField.H"
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
# include "setRootCase.H"
|
|
# include "createTime.H"
|
|
# include "createCrackerMesh.H"
|
|
# include "createFields.H"
|
|
# include "createCrack.H"
|
|
//# include "createReference.H"
|
|
# include "createHistory.H"
|
|
# include "readDivSigmaExpMethod.H"
|
|
# include "createSolidInterfaceNoModify.H"
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
Info<< "\nStarting time loop\n" << endl;
|
|
|
|
lduMatrix::debug = 0;
|
|
|
|
scalar maxEffTractionFraction = 0;
|
|
|
|
// time rates for predictor
|
|
volTensorField gradV = fvc::ddt(gradU);
|
|
surfaceVectorField snGradV =
|
|
(snGradU - snGradU.oldTime())/runTime.deltaT();
|
|
|
|
//# include "initialiseSolution.H"
|
|
|
|
while (runTime.run())
|
|
{
|
|
# include "readSolidMechanicsControls.H"
|
|
# include "setDeltaT.H"
|
|
|
|
runTime++;
|
|
|
|
Info<< "\nTime: " << runTime.timeName() << " s\n" << endl;
|
|
|
|
volScalarField rho = rheology.rho();
|
|
volDiagTensorField K = rheology.K();
|
|
surfaceDiagTensorField Kf = fvc::interpolate(K, "K");
|
|
volSymmTensor4thOrderField C = rheology.C();
|
|
surfaceSymmTensor4thOrderField Cf = fvc::interpolate(C, "C");
|
|
|
|
solidInterfacePtr->modifyProperties(Cf, Kf);
|
|
|
|
//# include "waveCourantNo.H"
|
|
|
|
int iCorr = 0;
|
|
lduMatrix::solverPerformance solverPerf;
|
|
scalar initialResidual = 0;
|
|
scalar relativeResidual = 1;
|
|
//scalar forceResidual = 1;
|
|
label nFacesToBreak = 0;
|
|
label nCoupledFacesToBreak = 0;
|
|
bool topoChange = false;
|
|
|
|
//bool noMoreCracks = false;
|
|
|
|
// Predictor step using time rates
|
|
if (predictor)
|
|
{
|
|
Info << "Predicting U, gradU and snGradU using velocity"
|
|
<< endl;
|
|
U += V*runTime.deltaT();
|
|
gradU += gradV*runTime.deltaT();
|
|
snGradU += snGradV*runTime.deltaT();
|
|
}
|
|
|
|
do
|
|
{
|
|
surfaceVectorField n = mesh.Sf()/mesh.magSf();
|
|
do
|
|
{
|
|
U.storePrevIter();
|
|
|
|
# include "calculateDivSigmaExp.H"
|
|
|
|
fvVectorMatrix UEqn
|
|
(
|
|
rho*fvm::d2dt2(U)
|
|
==
|
|
fvm::laplacian(Kf, U, "laplacian(K,U)")
|
|
+ divSigmaExp
|
|
);
|
|
|
|
//# include "setReference.H"
|
|
|
|
if(solidInterfacePtr)
|
|
{
|
|
solidInterfacePtr->correct(UEqn);
|
|
}
|
|
|
|
if (relaxEqn)
|
|
{
|
|
UEqn.relax();
|
|
}
|
|
|
|
solverPerf = UEqn.solve();
|
|
|
|
if (aitkenRelax)
|
|
{
|
|
# include "aitkenRelaxation.H"
|
|
}
|
|
else
|
|
{
|
|
U.relax();
|
|
}
|
|
|
|
if (iCorr == 0)
|
|
{
|
|
initialResidual = solverPerf.initialResidual();
|
|
aitkenInitialRes = gMax(mag(U.internalField()));
|
|
}
|
|
|
|
//gradU = solidInterfacePtr->grad(U);
|
|
// use leastSquaresSolidInterface grad scheme
|
|
gradU = fvc::grad(U);
|
|
|
|
|
|
# include "calculateRelativeResidual.H"
|
|
|
|
if (iCorr % infoFrequency == 0)
|
|
{
|
|
Info << "\tTime " << runTime.value()
|
|
<< ", Corr " << iCorr
|
|
<< ", Solving for " << U.name()
|
|
<< " using " << solverPerf.solverName()
|
|
<< ", res = " << solverPerf.initialResidual()
|
|
<< ", rel res = " << relativeResidual;
|
|
if (aitkenRelax)
|
|
{
|
|
Info << ", aitken = " << aitkenTheta;
|
|
}
|
|
Info << ", inner iters " << solverPerf.nIterations() << endl;
|
|
}
|
|
}
|
|
while
|
|
(
|
|
//iCorr++ == 0
|
|
iCorr++ < 10
|
|
||
|
|
(
|
|
//solverPerf.initialResidual() > convergenceTolerance
|
|
relativeResidual > convergenceTolerance
|
|
&&
|
|
iCorr < nCorr
|
|
)
|
|
);
|
|
|
|
Info<< "Solving for " << U.name() << " using "
|
|
<< solverPerf.solverName()
|
|
<< ", Initial residual = " << initialResidual
|
|
<< ", Final residual = " << solverPerf.initialResidual()
|
|
<< ", No outer iterations " << iCorr
|
|
<< ", Relative residual " << relativeResidual << endl;
|
|
|
|
# include "calculateTraction.H"
|
|
# include "updateCrack.H"
|
|
|
|
Info << "Max effective traction fraction: "
|
|
<< maxEffTractionFraction << endl;
|
|
|
|
// reset counter if faces want to crack
|
|
if ((nFacesToBreak > 0) || (nCoupledFacesToBreak > 0)) iCorr = 0;
|
|
}
|
|
while( (nFacesToBreak > 0) || (nCoupledFacesToBreak > 0));
|
|
|
|
if (cohesivePatchUPtr)
|
|
{
|
|
if (returnReduce(cohesivePatchUPtr->size(), sumOp<label>()))
|
|
{
|
|
cohesivePatchUPtr->cracking();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if
|
|
(
|
|
returnReduce
|
|
(
|
|
cohesivePatchUFixedModePtr->size(),
|
|
sumOp<label>())
|
|
)
|
|
{
|
|
Pout << "Number of faces in crack: "
|
|
<< cohesivePatchUFixedModePtr->size() << endl;
|
|
cohesivePatchUFixedModePtr->relativeSeparationDistance();
|
|
}
|
|
}
|
|
|
|
// update time rates for predictor
|
|
if (predictor)
|
|
{
|
|
V = fvc::ddt(U);
|
|
gradV = fvc::ddt(gradU);
|
|
snGradV = (snGradU - snGradU.oldTime())/runTime.deltaT();
|
|
}
|
|
|
|
# include "calculateEpsilonSigma.H"
|
|
# include "writeFields.H"
|
|
# include "writeHistory.H"
|
|
|
|
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
|
|
<< " ClockTime = " << runTime.elapsedClockTime() << " s\n\n"
|
|
<< endl;
|
|
}
|
|
|
|
Info<< "End\n" << endl;
|
|
|
|
return(0);
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|