This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/solvers/solidMechanics/elasticOrthoAcpSolidFoam/elasticOrthoAcpSolidFoam.C
2013-12-11 16:09:41 +00:00

271 lines
8.2 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration |
\\ / A nd | For copyright notice see file Copyright
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
Application
elasticOrthoAcpSolidFoam
Description
Arbitrary crack propagation (ACP) solver
allowing orthotropic material properties.
Please cite:
Cardiff P, Karac A & Ivankovic A, A Large Strain Finite Volume Method for
Orthotropic Bodies with General Material Orientations, Computer Methods
in Applied Mechanics & Engineering, Sep 2013,
http://dx.doi.org/10.1016/j.cma.2013.09.008.
Carolan D, Tuković Z, Murphy N, Ivankovic A, Arbitrary crack propagation
in multi-phase materials using the finite volume method, Computational
Materials Science, 2013, http://dx.doi.org/10.1016/j.commatsci.2012.11.049.
Author
Philip Cardiff UCD
ACP by Tukovic FSB and Carolan UCD
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "constitutiveModel.H"
//#include "componentReferenceList.H"
#include "crackerFvMesh.H"
#include "processorPolyPatch.H"
#include "SortableList.H"
#include "solidInterface.H"
#include "solidCohesiveFvPatchVectorField.H"
#include "solidCohesiveFixedModeMixFvPatchVectorField.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createCrackerMesh.H"
# include "createFields.H"
# include "createCrack.H"
//# include "createReference.H"
# include "createHistory.H"
# include "readDivSigmaExpMethod.H"
# include "createSolidInterfaceNoModify.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
lduMatrix::debug = 0;
scalar maxEffTractionFraction = 0;
// time rates for predictor
volTensorField gradV = fvc::ddt(gradU);
surfaceVectorField snGradV =
(snGradU - snGradU.oldTime())/runTime.deltaT();
//# include "initialiseSolution.H"
while (runTime.run())
{
# include "readSolidMechanicsControls.H"
# include "setDeltaT.H"
runTime++;
Info<< "\nTime: " << runTime.timeName() << " s\n" << endl;
volScalarField rho = rheology.rho();
volDiagTensorField K = rheology.K();
surfaceDiagTensorField Kf = fvc::interpolate(K, "K");
volSymmTensor4thOrderField C = rheology.C();
surfaceSymmTensor4thOrderField Cf = fvc::interpolate(C, "C");
solidInterfacePtr->modifyProperties(Cf, Kf);
//# include "waveCourantNo.H"
int iCorr = 0;
lduMatrix::solverPerformance solverPerf;
scalar initialResidual = 0;
scalar relativeResidual = 1;
//scalar forceResidual = 1;
label nFacesToBreak = 0;
label nCoupledFacesToBreak = 0;
bool topoChange = false;
//bool noMoreCracks = false;
// Predictor step using time rates
if (predictor)
{
Info << "Predicting U, gradU and snGradU using velocity"
<< endl;
U += V*runTime.deltaT();
gradU += gradV*runTime.deltaT();
snGradU += snGradV*runTime.deltaT();
}
do
{
surfaceVectorField n = mesh.Sf()/mesh.magSf();
do
{
U.storePrevIter();
# include "calculateDivSigmaExp.H"
fvVectorMatrix UEqn
(
rho*fvm::d2dt2(U)
==
fvm::laplacian(Kf, U, "laplacian(K,U)")
+ divSigmaExp
);
//# include "setReference.H"
if(solidInterfacePtr)
{
solidInterfacePtr->correct(UEqn);
}
if (relaxEqn)
{
UEqn.relax();
}
solverPerf = UEqn.solve();
if (aitkenRelax)
{
# include "aitkenRelaxation.H"
}
else
{
U.relax();
}
if (iCorr == 0)
{
initialResidual = solverPerf.initialResidual();
aitkenInitialRes = gMax(mag(U.internalField()));
}
//gradU = solidInterfacePtr->grad(U);
// use leastSquaresSolidInterface grad scheme
gradU = fvc::grad(U);
# include "calculateRelativeResidual.H"
if (iCorr % infoFrequency == 0)
{
Info << "\tTime " << runTime.value()
<< ", Corr " << iCorr
<< ", Solving for " << U.name()
<< " using " << solverPerf.solverName()
<< ", res = " << solverPerf.initialResidual()
<< ", rel res = " << relativeResidual;
if (aitkenRelax)
{
Info << ", aitken = " << aitkenTheta;
}
Info << ", inner iters " << solverPerf.nIterations() << endl;
}
}
while
(
//iCorr++ == 0
iCorr++ < 10
||
(
//solverPerf.initialResidual() > convergenceTolerance
relativeResidual > convergenceTolerance
&&
iCorr < nCorr
)
);
Info<< "Solving for " << U.name() << " using "
<< solverPerf.solverName()
<< ", Initial residual = " << initialResidual
<< ", Final residual = " << solverPerf.initialResidual()
<< ", No outer iterations " << iCorr
<< ", Relative residual " << relativeResidual << endl;
# include "calculateTraction.H"
# include "updateCrack.H"
Info << "Max effective traction fraction: "
<< maxEffTractionFraction << endl;
// reset counter if faces want to crack
if ((nFacesToBreak > 0) || (nCoupledFacesToBreak > 0)) iCorr = 0;
}
while( (nFacesToBreak > 0) || (nCoupledFacesToBreak > 0));
if (cohesivePatchUPtr)
{
if (returnReduce(cohesivePatchUPtr->size(), sumOp<label>()))
{
cohesivePatchUPtr->cracking();
}
}
else
{
if
(
returnReduce
(
cohesivePatchUFixedModePtr->size(),
sumOp<label>())
)
{
Pout << "Number of faces in crack: "
<< cohesivePatchUFixedModePtr->size() << endl;
cohesivePatchUFixedModePtr->relativeSeparationDistance();
}
}
// update time rates for predictor
if (predictor)
{
V = fvc::ddt(U);
gradV = fvc::ddt(gradU);
snGradV = (snGradU - snGradU.oldTime())/runTime.deltaT();
}
# include "calculateEpsilonSigma.H"
# include "writeFields.H"
# include "writeHistory.H"
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s\n\n"
<< endl;
}
Info<< "End\n" << endl;
return(0);
}
// ************************************************************************* //