This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/utilities/postProcessing/wall/wallShearStress/wallShearStress.C

214 lines
5.4 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration |
\\ / A nd | For copyright notice see file Copyright
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
Application
wallShearStress
Description
Calculates and reports wall shear stress for all patches, for the
specified times when using RAS turbulence models.
Default behaviour assumes operating in incompressible mode.
Use the -compressible option for compressible RAS cases.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "incompressible/singlePhaseTransportModel/singlePhaseTransportModel.H"
#include "incompressible/RAS/RASModel/RASModel.H"
#include "basicPsiThermo.H"
#include "compressible/RAS/RASModel/RASModel.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
void calcIncompressible
(
const fvMesh& mesh,
const Time& runTime,
const volVectorField& U,
volVectorField& wallShearStress
)
{
#include "createPhi.H"
singlePhaseTransportModel laminarTransport(U, phi);
autoPtr<incompressible::RASModel> model
(
incompressible::RASModel::New(U, phi, laminarTransport)
);
const volSymmTensorField Reff(model->devReff());
forAll(wallShearStress.boundaryField(), patchI)
{
wallShearStress.boundaryField()[patchI] =
(
-mesh.Sf().boundaryField()[patchI]
/mesh.magSf().boundaryField()[patchI]
) & Reff.boundaryField()[patchI];
}
}
void calcCompressible
(
const fvMesh& mesh,
const Time& runTime,
const volVectorField& U,
volVectorField& wallShearStress
)
{
IOobject rhoHeader
(
"rho",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
);
if (!rhoHeader.headerOk())
{
Info<< " no rho field" << endl;
return;
}
Info<< "Reading field rho\n" << endl;
volScalarField rho(rhoHeader, mesh);
#include "compressibleCreatePhi.H"
autoPtr<basicPsiThermo> pThermo
(
basicPsiThermo::New(mesh)
);
basicPsiThermo& thermo = pThermo();
autoPtr<compressible::RASModel> model
(
compressible::RASModel::New
(
rho,
U,
phi,
thermo
)
);
const volSymmTensorField Reff(model->devRhoReff());
forAll(wallShearStress.boundaryField(), patchI)
{
wallShearStress.boundaryField()[patchI] =
(
-mesh.Sf().boundaryField()[patchI]
/mesh.magSf().boundaryField()[patchI]
) & Reff.boundaryField()[patchI];
}
}
int main(int argc, char *argv[])
{
timeSelector::addOptions();
#include "addRegionOption.H"
argList::validOptions.insert("compressible","");
#include "setRootCase.H"
#include "createTime.H"
instantList timeDirs = timeSelector::select0(runTime, args);
#include "createNamedMesh.H"
bool compressible = args.optionFound("compressible");
forAll(timeDirs, timeI)
{
runTime.setTime(timeDirs[timeI], timeI);
Info<< "Time = " << runTime.timeName() << endl;
mesh.readUpdate();
volVectorField wallShearStress
(
IOobject
(
"wallShearStress",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedVector
(
"wallShearStress",
sqr(dimLength)/sqr(dimTime),
vector::zero
)
);
IOobject UHeader
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
);
if (UHeader.headerOk())
{
Info<< "Reading field U\n" << endl;
volVectorField U(UHeader, mesh);
if (compressible)
{
calcCompressible(mesh, runTime, U, wallShearStress);
}
else
{
calcIncompressible(mesh, runTime, U, wallShearStress);
}
}
else
{
Info<< " no U field" << endl;
}
Info<< "Writing wall shear stress to field " << wallShearStress.name()
<< nl << endl;
wallShearStress.write();
}
Info<< "End" << endl;
return 0;
}
// ************************************************************************* //