This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/utilities/postProcessing/graphics/PV4FoamReader/vtkPV4Foam/vtkPV4FoamVolFields.H
2016-06-21 15:04:12 +02:00

377 lines
9.7 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration | Version: 4.0
\\ / A nd | Web: http://www.foam-extend.org
\\/ M anipulation | For copyright notice see file Copyright
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see <http://www.gnu.org/licenses/>.
InClass
vtkPV4Foam
\*---------------------------------------------------------------------------*/
#ifndef vtkPV4FoamVolFields_H
#define vtkPV4FoamVolFields_H
// Foam includes
#include "emptyFvPatchField.H"
#include "wallPolyPatch.H"
#include "faceSet.H"
#include "volPointInterpolation.H"
#include "vtkPV4FoamFaceField.H"
#include "vtkPV4FoamPatchField.H"
#include "vtkFoamTupleRemap.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
template<class Type>
void Foam::vtkPV4Foam::convertVolFields
(
const fvMesh& mesh,
const PtrList<PrimitivePatchInterpolation<primitivePatch> >& ppInterpList,
const IOobjectList& objects,
vtkMultiBlockDataSet* output
)
{
const polyBoundaryMesh& patches = mesh.boundaryMesh();
forAllConstIter(IOobjectList, objects, iter)
{
// restrict to GeometricField<Type, ...>
if
(
iter()->headerClassName()
!= GeometricField<Type, fvPatchField, volMesh>::typeName
)
{
continue;
}
// Load field
GeometricField<Type, fvPatchField, volMesh> tf
(
*iter(),
mesh
);
// Interpolated field (demand driven)
autoPtr<GeometricField<Type, pointPatchField, pointMesh> > ptfPtr;
// Convert activated internalMesh regions
convertVolFieldBlock
(
tf,
ptfPtr,
output,
partInfoVolume_,
regionPolyDecomp_
);
// Convert activated cellZones
convertVolFieldBlock
(
tf,
ptfPtr,
output,
partInfoCellZones_,
zonePolyDecomp_
);
// Convert activated cellSets
convertVolFieldBlock
(
tf,
ptfPtr,
output,
partInfoCellSets_,
csetPolyDecomp_
);
//
// Convert patches - if activated
//
// The name for the interpolated patch point field must be consistent
// with the interpolated volume point field.
// This could be done better.
const word pointFldName = "volPointInterpolate(" + tf.name() + ')';
for
(
int partId = partInfoPatches_.start();
partId < partInfoPatches_.end();
++partId
)
{
const word patchName = getPartName(partId);
const label datasetNo = partDataset_[partId];
const label patchId = patches.findPatchID(patchName);
if (!partStatus_[partId] || datasetNo < 0 || patchId < 0)
{
continue;
}
const fvPatchField<Type>& ptf = tf.boundaryField()[patchId];
if
(
isType<emptyFvPatchField<Type> >(ptf)
||
(
reader_->GetExtrapolatePatches()
&& !polyPatch::constraintType(patches[patchId].type())
)
)
{
fvPatch p(ptf.patch().patch(), tf.mesh().boundary());
tmp<Field<Type> > tpptf
(
fvPatchField<Type>(p, tf).patchInternalField()
);
convertPatchField
(
tf.name(),
tpptf(),
output,
partInfoPatches_,
datasetNo
);
convertPatchPointField
(
pointFldName,
ppInterpList[patchId].faceToPointInterpolate(tpptf)(),
output,
partInfoPatches_,
datasetNo
);
}
else
{
convertPatchField
(
tf.name(),
ptf,
output,
partInfoPatches_,
datasetNo
);
convertPatchPointField
(
pointFldName,
ppInterpList[patchId].faceToPointInterpolate(ptf)(),
output,
partInfoPatches_,
datasetNo
);
}
}
//
// Convert face zones - if activated
//
for
(
int partId = partInfoFaceZones_.start();
partId < partInfoFaceZones_.end();
++partId
)
{
const word zoneName = getPartName(partId);
const label datasetNo = partDataset_[partId];
if (!partStatus_[partId] || datasetNo < 0)
{
continue;
}
const faceZoneMesh& zMesh = mesh.faceZones();
const label zoneId = zMesh.findZoneID(zoneName);
if (zoneId < 0)
{
continue;
}
convertFaceField
(
tf,
output,
partInfoFaceZones_,
datasetNo,
mesh,
zMesh[zoneId]
);
// TODO: points
}
//
// Convert face sets - if activated
//
for
(
int partId = partInfoFaceSets_.start();
partId < partInfoFaceSets_.end();
++partId
)
{
const word selectName = getPartName(partId);
const label datasetNo = partDataset_[partId];
if (!partStatus_[partId] || datasetNo < 0)
{
continue;
}
const faceSet fSet(mesh, selectName);
convertFaceField
(
tf,
output,
partInfoFaceSets_,
datasetNo,
mesh,
fSet
);
// TODO: points
}
}
}
template<class Type>
void Foam::vtkPV4Foam::convertVolFieldBlock
(
const GeometricField<Type, fvPatchField, volMesh>& tf,
autoPtr<GeometricField<Type, pointPatchField, pointMesh> >& ptfPtr,
vtkMultiBlockDataSet* output,
const partInfo& selector,
const List<polyDecomp>& decompLst
)
{
for (int partId = selector.start(); partId < selector.end(); ++partId)
{
const label datasetNo = partDataset_[partId];
if (datasetNo >= 0 && partStatus_[partId])
{
convertVolField
(
tf,
output,
selector,
datasetNo,
decompLst[datasetNo]
);
if (!ptfPtr.valid())
{
if (debug)
{
Info<< "convertVolFieldBlock interpolating:" << tf.name()
<< endl;
}
ptfPtr.reset
(
volPointInterpolation::New(tf.mesh()).interpolate(tf).ptr()
);
}
convertPointField
(
ptfPtr(),
tf,
output,
selector,
datasetNo,
decompLst[datasetNo]
);
}
}
}
template<class Type>
void Foam::vtkPV4Foam::convertVolField
(
const GeometricField<Type, fvPatchField, volMesh>& tf,
vtkMultiBlockDataSet* output,
const partInfo& selector,
const label datasetNo,
const polyDecomp& decompInfo
)
{
const label nComp = pTraits<Type>::nComponents;
const labelList& superCells = decompInfo.superCells();
vtkFloatArray* celldata = vtkFloatArray::New();
celldata->SetNumberOfTuples(superCells.size());
celldata->SetNumberOfComponents(nComp);
celldata->Allocate(nComp*superCells.size());
celldata->SetName(tf.name().c_str());
if (debug)
{
Info<< "convert volField: "
<< tf.name()
<< " size = " << tf.size()
<< " nComp=" << nComp
<< " nTuples = " << superCells.size() << endl;
}
float vec[nComp];
forAll(superCells, i)
{
const Type& t = tf[superCells[i]];
for (direction d=0; d<nComp; d++)
{
vec[d] = component(t, d);
}
vtkFoamTupleRemap<Type>(vec);
celldata->InsertTuple(i, vec);
}
vtkUnstructuredGrid::SafeDownCast
(
GetDataSetFromBlock(output, selector, datasetNo)
) ->GetCellData()
->AddArray(celldata);
celldata->Delete();
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //