This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/tutorials/incompressible/MRFSimpleFoam/axialTurbine_ggi/constant/polyMesh/blockMeshDict.m4
2018-06-01 18:11:37 +02:00

509 lines
13 KiB
C++

/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | foam-extend: Open Source CFD |
| \\ / O peration | Version: 4.1 |
| \\ / A nd | Web: http://www.foam-extend.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object blockMeshDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// General macros to create 2D/extruded-2D meshes
changecom(//)changequote([,])
define(calc, [esyscmd(perl -e 'printf ($1)')])
//define(calc, [esyscmd(echo $1 | bc | tr -d \\n)])
define(VCOUNT, 0)
define(vlabel, [[// ]Vertex $1 = VCOUNT define($1, VCOUNT)define([VCOUNT], incr(VCOUNT))])
define(pi, calc(3.14159265/20))
define(hex2D, hex ($1b $2b $3b $4b $1t $2t $3t $4t))
define(quad2D, ($1b $2b $2t $1t))
define(frontQuad, ($1t $2t $3t $4t))
define(backQuad, ($1b $4b $3b $2b))
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
convertToMeters 1;
// HUB AND SHROUD RADIUS
// Hub radius (m)
define(hr, 0.05)
// Shroud radius (m)
define(sr, 0.1)
// GUIDE VANE REGION GEOMETRY AND MESH PROPERTIES
// Guide vane inlet axial length (m)
define(GVial, 0.1)
// Guide vane axial length (m)
define(GVbal, 0.1)
// Guide vane outlet axial length (m)
define(GVoal, 0.02)
// Number of guide vanes per 360 degrees (integer!)
define(GVnb, 5)
// Number of cells in radial direction at guide vane
define(GVrc, 10)
// Number of cells in tangential direction between guide vanes
define(GVtc, 10)
// Number of cells in axial direction at guide vane inlet
define(GViac, 10)
// Number of cells in axial direction between guide vanes
define(GVbac, 10)
// Number of cells in axial direction at guide vane outlet
define(GVoac, 2)
// RUNNER REGION GEOMETRY AND MESH PROPERTIES
// Runner inlet axial length (m)
define(RUial, 0.02)
// Runner axial length (m)
define(RUal, 0.1)
// Runner outlet axial length (m)
define(RUoal, 0.02)
// Number of runner blades per 360 degrees (integer!)
define(RUnb, 5)
// Number of cells in radial direction in runner
define(RUrc, 10)
// Number of cells in tangential direction between runner blades
define(RUtc, 10)
// Number of cells in axial direction at runner inlet
define(RUiac, 2)
// Number of cells in axial direction between runner blades
define(RUbac, 10)
// Number of cells in axial direction at runner outlet
define(RUoac, 2)
// DRAFT TUBE REGION GEOMETRY AND MESH PROPERTIES
// "Draft tube" axial length (m)
define(DTal, 0.07)
// Number of sections per 360 degrees (integer!)
define(DTns, 5)
// Number of cells in radial direction in "draft tube"
define(DTrc, 10)
// Number of cells in tangential direction in "draft tube"
define(DTtc, 10)
// Number of cells in axial direction in "draft tube"
define(DTac, 7)
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// TANGENTIAL PITCHES (RADIANS)
// Guide vane region
define(GVp, calc(2*pi/GVnb))
// Runner region
define(RUp, calc(2*pi/RUnb))
// Draft tube region
define(DTp, calc(2*pi/DTns))
// TANGENTIAL SHIFTS BETWEEN AXIAL LEVELS (BOTTOM-UP)
// Tangential shift from level DT0 to DT1
define(DTts01, calc(5*DTp))
// Runner region
// Tangential shift from level RU0 to RU1
define(RUts01, calc(-1/10*RUp))
// Tangential shift from level RU1 to RU2
define(RUts12, calc(-4/5*RUp))
// Tangential shift from level RU2 to RU3
define(RUts23, calc(-1/10*RUp))
// Guide vane region
// Tangential shift from level GV0 to GV1
define(GVts01, calc(1/10*GVp))
// Tangential shift from level GV1 to GV2
define(GVts12, calc(1/2*GVp))
// Tangential shift from level GV2 to GV3
define(GVts23, calc(0*GVp))
// AXIAL/TANGENTIAL BASE POINTS FOR EACH LEVEL (BOTTOM-UP):
// (CENTER OF RUNNER SET TO THETA=0, Z=0)
// Draft tube:
define(DTa0, calc(-RUoal-0.5*RUal-DTal)) //Center runner
define(DTt0, calc(-0.5*RUp-(0.5*RUts12)-(0*DTts01))) // Straight draft tube!
define(DTt1, calc(-0.5*RUp-(0.5*RUts12))) //Center runner
// Runner:
define(RUa0, calc(-RUoal-0.5*RUal)) //Center runner
define(RUt0, calc(-0.5*RUp-(0.5*RUts12))) //Center runner
define(RUt1, calc(RUt0+RUts01))
define(RUt2, calc(RUt1+RUts12))
define(RUt3, calc(RUt2+RUts23))
// Guide vane:
define(GVa0, calc(0.5*RUal+RUial)) //Center runner
define(GVt0, calc(-0.5*RUp-(0.5*RUts12)+RUts01+RUts12+RUts23)) //Center runner
define(GVt1, calc(GVt0+GVts01))
define(GVt2, calc(GVt1+GVts12))
define(GVt3, calc(GVt2+GVts23))
vertices //(radial [m], tangential [radians], axial [m])
(
//Guide vane hub:
(hr GVt0 GVa0) vlabel(GV0lb)
(hr calc(GVt0+GVp) GVa0) vlabel(GV0rb)
(hr GVt1 calc(GVa0+GVoal)) vlabel(GV1lb)
(hr calc(GVt1+GVp) calc(GVa0+GVoal)) vlabel(GV1rb)
(hr GVt2 calc(GVa0+GVoal+GVbal)) vlabel(GV2lb)
(hr calc(GVt2+GVp) calc(GVa0+GVoal+GVbal)) vlabel(GV2rb)
(hr GVt3 calc(GVa0+GVoal+GVbal+GVial)) vlabel(GV3lb)
(hr calc(GVt3+GVp) calc(GVa0+GVoal+GVbal+GVial)) vlabel(GV3rb)
//Guide vane shroud:
(sr GVt0 GVa0) vlabel(GV0lt)
(sr calc(GVt0+GVp) GVa0) vlabel(GV0rt)
(sr GVt1 calc(GVa0+GVoal)) vlabel(GV1lt)
(sr calc(GVt1+GVp) calc(GVa0+GVoal)) vlabel(GV1rt)
(sr GVt2 calc(GVa0+GVoal+GVbal)) vlabel(GV2lt)
(sr calc(GVt2+GVp) calc(GVa0+GVoal+GVbal)) vlabel(GV2rt)
(sr GVt3 calc(GVa0+GVoal+GVbal+GVial)) vlabel(GV3lt)
(sr calc(GVt3+GVp) calc(GVa0+GVoal+GVbal+GVial)) vlabel(GV3rt)
//Runner hub:
(hr RUt0 RUa0) vlabel(RU0lb)
(hr calc(RUt0+RUp) RUa0) vlabel(RU0rb)
(hr RUt1 calc(RUa0+RUoal)) vlabel(RU1lb)
(hr calc(RUt1+RUp) calc(RUa0+RUoal)) vlabel(RU1rb)
(hr RUt2 calc(RUa0+RUoal+RUal)) vlabel(RU2lb)
(hr calc(RUt2+RUp) calc(RUa0+RUoal+RUal)) vlabel(RU2rb)
(hr RUt3 calc(RUa0+RUoal+RUal+RUial)) vlabel(RU3lb)
(hr calc(RUt3+RUp) calc(RUa0+RUoal+RUal+RUial)) vlabel(RU3rb)
//Runner shroud:
(sr RUt0 RUa0) vlabel(RU0lt)
(sr calc(RUt0+RUp) RUa0) vlabel(RU0rt)
(sr RUt1 calc(RUa0+RUoal)) vlabel(RU1lt)
(sr calc(RUt1+RUp) calc(RUa0+RUoal)) vlabel(RU1rt)
(sr RUt2 calc(RUa0+RUoal+RUal)) vlabel(RU2lt)
(sr calc(RUt2+RUp) calc(RUa0+RUoal+RUal)) vlabel(RU2rt)
(sr RUt3 calc(RUa0+RUoal+RUal+RUial)) vlabel(RU3lt)
(sr calc(RUt3+RUp) calc(RUa0+RUoal+RUal+RUial)) vlabel(RU3rt)
//Draft tube hub:
(hr DTt0 DTa0) vlabel(DT0lb)
(hr calc(DTt0+DTp) DTa0) vlabel(DT0rb)
(hr DTt1 calc(DTa0+DTal)) vlabel(DT1lb)
(hr calc(DTt1+DTp) calc(DTa0+DTal)) vlabel(DT1rb)
//Draft tube shroud:
(sr DTt0 DTa0) vlabel(DT0lt)
(sr calc(DTt0+DTp) DTa0) vlabel(DT0rt)
(sr DTt1 calc(DTa0+DTal)) vlabel(DT1lt)
(sr calc(DTt1+DTp) calc(DTa0+DTal)) vlabel(DT1rt)
);
blocks
(
//Guide vane:
hex2D(GV0l, GV0r, GV1r, GV1l)
(GVtc GVoac GVrc)
simpleGrading (1 1 1)
hex2D(GV1l, GV1r, GV2r, GV2l)
(GVtc GVbac GVrc)
simpleGrading (1 1 1)
hex2D(GV2l, GV2r, GV3r, GV3l)
(GVtc GViac GVrc)
simpleGrading (1 1 1)
//Runner:
hex2D(RU0l, RU0r, RU1r, RU1l)
rotor
(RUtc RUoac RUrc)
simpleGrading (1 1 1)
hex2D(RU1l, RU1r, RU2r, RU2l)
rotor
(RUtc RUbac RUrc)
simpleGrading (1 1 1)
hex2D(RU2l, RU2r, RU3r, RU3l)
rotor
(RUtc RUiac RUrc)
simpleGrading (1 1 1)
//Draft tube:
hex2D(DT0l, DT0r, DT1r, DT1l)
(DTtc DTac DTrc)
simpleGrading (1 1 1)
);
edges // Inappropriate with arc due to coordinate conversion
(
//Runner
spline RU1lt RU2lt
(
(sr calc(RUt1+0.65*(RUt2-(RUt1))) calc(RUa0+RUoal+0.5*RUal))
)
spline RU1lb RU2lb
(
(hr calc(RUt1+0.65*(RUt2-(RUt1))) calc(RUa0+RUoal+0.5*RUal))
)
spline RU1rt RU2rt
(
(sr calc(RUt1+RUp+0.75*(RUt2-(RUt1))) calc(RUa0+RUoal+0.5*RUal))
)
spline RU1rb RU2rb
(
(hr calc(RUt1+RUp+0.75*(RUt2-(RUt1))) calc(RUa0+RUoal+0.5*RUal))
)
//Guide vane
spline GV1lt GV2lt
(
(sr calc(GVt1+0.75*(GVt2-(GVt1))) calc(GVa0+GVoal+0.5*GVbal))
)
spline GV1lb GV2lb
(
(hr calc(GVt1+0.75*(GVt2-(GVt1))) calc(GVa0+GVoal+0.5*GVbal))
)
spline GV1rt GV2rt
(
(sr calc(GVt1+GVp+0.65*(GVt2-(GVt1))) calc(GVa0+GVoal+0.5*GVbal))
)
spline GV1rb GV2rb
(
(hr calc(GVt1+GVp+0.65*(GVt2-(GVt1))) calc(GVa0+GVoal+0.5*GVbal))
)
);
boundary
(
GVINLET
{
type patch;
faces
(
quad2D(GV3r, GV3l)
);
}
GVOUTLET
{
type ggi;
shadowPatch RUINLET;
zone GVOUTLETZone;
bridgeOverlap false;
faces
(
quad2D(GV0l, GV0r)
);
}
GVCYCLIC
{
type cyclic;
featureCos 0.9;
//MUST specify transformation since cyclic is not flat.
//Set global debugSwitch cyclic to 1 to check that it is correct!
transform rotational;
rotationAxis (0 0 1);
rotationCentre (0 0 0);
rotationAngle -72; //Degrees from second half to first half
//Face numbering must be same on both halfs/sides. The numbering
//is determined by the block definition, not by the faces list
//below. Just make sure that each face definition is according
//to the rule "clockwise when looking from inside the block".
faces
(
//First half, left side:
quad2D(GV1l, GV0l)
quad2D(GV3l, GV2l)
//Second half, right side:
quad2D(GV0r, GV1r)
quad2D(GV2r, GV3r)
);
}
GVBLADE
{
type wall;
faces
(
quad2D(GV2l, GV1l)
quad2D(GV1r, GV2r)
);
}
GVHUB
{
type wall;
faces
(
backQuad(GV0l, GV0r, GV1r, GV1l)
backQuad(GV1l, GV1r, GV2r, GV2l)
backQuad(GV2l, GV2r, GV3r, GV3l)
);
}
GVSHROUD
{
type wall;
faces
(
frontQuad(GV0l, GV0r, GV1r, GV1l)
frontQuad(GV1l, GV1r, GV2r, GV2l)
frontQuad(GV2l, GV2r, GV3r, GV3l)
);
}
RUINLET
{
type ggi;
shadowPatch GVOUTLET;
zone RUINLETZone;
bridgeOverlap false;
faces
(
quad2D(RU3r, RU3l)
);
}
RUOUTLET
{
type ggi;
shadowPatch DTINLET;
zone RUOUTLETZone;
bridgeOverlap false;
faces
(
quad2D(RU0l, RU0r)
);
}
RUCYCLIC1
{
type cyclicGgi;
shadowPatch RUCYCLIC2;
zone RUCYCLIC1Zone;
bridgeOverlap false;
rotationAxis (0 0 1);
rotationAngle 72;
separationOffset (0 0 0);
faces
(
quad2D(RU1l, RU0l)
quad2D(RU3l, RU2l)
);
}
RUCYCLIC2
{
type cyclicGgi;
shadowPatch RUCYCLIC1;
zone RUCYCLIC2Zone;
bridgeOverlap false;
rotationAxis (0 0 1);
rotationAngle -72;
separationOffset (0 0 0);
faces
(
quad2D(RU0r, RU1r)
quad2D(RU2r, RU3r)
);
}
RUBLADE
{
type wall;
faces
(
quad2D(RU2l, RU1l)
quad2D(RU1r, RU2r)
);
}
RUHUB
{
type wall;
faces
(
backQuad(RU0l, RU0r, RU1r, RU1l)
backQuad(RU1l, RU1r, RU2r, RU2l)
backQuad(RU2l, RU2r, RU3r, RU3l)
);
}
RUSHROUD
{
type wall;
faces
(
frontQuad(RU0l, RU0r, RU1r, RU1l)
frontQuad(RU1l, RU1r, RU2r, RU2l)
frontQuad(RU2l, RU2r, RU3r, RU3l)
);
}
DTINLET
{
type ggi;
shadowPatch RUOUTLET;
zone DTINLETZone;
bridgeOverlap false;
faces
(
quad2D(DT1r, DT1l)
);
}
DTOUTLET
{
type patch;
faces
(
quad2D(DT0l, DT0r)
);
}
DTCYCLIC1
{
type cyclicGgi;
shadowPatch DTCYCLIC2;
zone DTCYCLIC1Zone;
bridgeOverlap false;
rotationAxis (0 0 1);
rotationAngle 72;
separationOffset (0 0 0);
faces
(
quad2D(DT1l, DT0l)
);
}
DTCYCLIC2
{
type cyclicGgi;
shadowPatch DTCYCLIC1;
zone DTCYCLIC2Zone;
bridgeOverlap false;
rotationAxis (0 0 1);
rotationAngle -72;
separationOffset (0 0 0);
faces
(
quad2D(DT0r, DT1r)
);
}
DTHUB
{
type wall;
faces
(
backQuad(DT0l, DT0r, DT1r, DT1l)
);
}
DTSHROUD
{
type wall;
faces
(
frontQuad(DT0l, DT0r, DT1r, DT1l)
);
}
);
// ************************************************************************* //