60 lines
1.3 KiB
C++
60 lines
1.3 KiB
C++
bool closedVolume = false;
|
|
|
|
rho = thermo.rho();
|
|
|
|
volScalarField rUA = 1.0/UEqn.A();
|
|
surfaceScalarField rhorUAf("(rho*(1|A(U)))", fvc::interpolate(rho*rUA));
|
|
U = rUA*UEqn.H();
|
|
|
|
surfaceScalarField phiU
|
|
(
|
|
fvc::interpolate(rho)
|
|
*(
|
|
(fvc::interpolate(U) & mesh.Sf())
|
|
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
|
|
)
|
|
);
|
|
|
|
phi = phiU + rhorUAf*fvc::interpolate(rho)*(g & mesh.Sf());
|
|
|
|
while (pimple.correctNonOrthogonal())
|
|
{
|
|
surfaceScalarField rhorUAf = fvc::interpolate(rho*rUA);
|
|
|
|
fvScalarMatrix pEqn
|
|
(
|
|
fvm::ddt(psi,p)
|
|
+ fvc::div(phi)
|
|
- fvm::laplacian(rhorUAf, p)
|
|
);
|
|
|
|
closedVolume = p.needReference();
|
|
|
|
pEqn.solve
|
|
(
|
|
mesh.solutionDict().solver(p.select(pimple.finalInnerIter()))
|
|
);
|
|
|
|
if (pimple.finalNonOrthogonalIter())
|
|
{
|
|
phi += pEqn.flux();
|
|
}
|
|
}
|
|
|
|
DpDt = fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
|
|
|
|
#include "rhoEqn.H"
|
|
#include "compressibleContinuityErrs.H"
|
|
|
|
U += rUA*fvc::reconstruct((phi - phiU)/rhorUAf);
|
|
U.correctBoundaryConditions();
|
|
|
|
// For closed-volume cases adjust the pressure and density levels
|
|
// to obey overall mass continuity
|
|
if (closedVolume)
|
|
{
|
|
p +=
|
|
(initialMass - fvc::domainIntegrate(thermo.psi()*p))
|
|
/fvc::domainIntegrate(thermo.psi());
|
|
rho = thermo.rho();
|
|
}
|