

cfMesh v1.0.1

User Guide
Document version: 1.0.1

Principal developer and document author:

Dr. Franjo Juretić, M. Eng., Assist. Prof.

Managing Director and Founding Partner

Creative Fields, Ltd.

Zagreb, October 2014

 1

Contents

1. Introduction ..2

2. Available meshing workflows ...2

2.1. Cartesian ...3

2.2. 2D Cartesian ..4

2.3. Tetrahedral ..5

3. Input geometry...6

4. Required dictionaries and available settings..8

4.1. Dictionaries ..8

4.2. Mandatory settings in meshDict ...8

4.3. Refinement settings in meshDict ...8

4.4. Keeping/removing of cells in user-defined regions ..11

4.5. Boundary layers ...13

4.6. Renaming patches ...14

4.7. Enforcing geometry constraints ...15

5. Utilities ...16

Appendix A: Installation instructions ..17

 2

1. Introduction

cfMesh is a cross-platform library for automatic mesh generation that is built on top of OpenFOAM®1. It is

licensed under GPL, and compatible with all recent versions of OpenFOAM® and foam-extend.

cfMesh supports various 3D and 2D workflows, built by using components from the main library, which are

extensible and can be combined into various meshing workflows. The core library utilises the concept of mesh

modifiers, which allows for efficient parallelisation using both shared memory parallelisation (SMP) and

distributed memory parallelisation using MPI. In addition, special care has been taken on memory usage,

which is kept low by implementing data containers (lists, graphs, etc.) that do not require many dynamic

memory allocation operations during the meshing process.

2. Available meshing workflows

Meshing workflows implemented in cfMesh require input geometry in a form of surface triangulation, shown in
Figure 1, and the user-specified settings, which will be explained in detail in subsequent sections. All
workflows are parallelised for shared memory machines and use all available computer cores while running.
The number of utilised cores can be controlled by the OMP_NUM_THREADS environment variable, which
can be set to the desired number of cores.

Figure 1 – Surface mesh

Currently available meshing workflows start the meshing process by creating a so-called mesh template from
the input geometry and the user-specified settings. The template is later on adjusted to match the input
geometry. The process of fitting the template to the input geometry is designed to be tolerant to poor quality
input data, which does not need to be watertight. The available workflows differ by the type of cells generated
in the template.

1 None of the OpenFOAM® related offering by Creative Fields, Ltd., including cfMesh, is approved or endorsed by OpenCFD, Ltd. (ESI
Group), producer of the OpenFOAM® software. OpenFOAM® and OpenCFD® are registered trade marks of ESI Group.

 3

2.1. Cartesian

Cartesian workflow generates 3D meshes consisting of predominantly hexahedral cells with polyhedra in the
transition regions between the cells of different size. It is started by typing cartesianMesh in a shell window.
By default, it generates one boundary layer, which can be further refined on user request. In addition, this
workflow can be run using MPI parallelisation, which is intended for generation of large meshes, which do not
fit into the memory of a single available computer. An example of the mesh generated by cartesianMesh is
shown in Figure 2 and Figure 3.

Figure 2 – Volume mesh generated by cartesianMesh

Figure 3 – Detail of the mesh generated by cartesianMesh

 4

2.2. 2D Cartesian

It generates 2D meshes and is started by typing cartesian2DMesh in the console. By default it generates one
boundary layer which can be further refined. The geometry is given in a form of a ribbon, shown in Figure 4.
An example of final mesh is given in Figure 5.

Figure 4 – Input geometry for the cartesian2DMesh

Figure 5 – Mesh generated by cartesian2DMesh

 5

2.3. Tetrahedral

Tetrahedral workflow generates meshes consisting of tetrahedral cells and is started by typing tetMesh in a
console. By default, it does not generate any boundary layers, and they can be added and refined on user
request. An example of a tetrahedral mesh generated by this workflow is given in Figure 6 and Figure 7.

Figure 6 – Mesh generated by tetMesh

Figure 7 – Detail of the mesh generated by tetMesh

 6

3. Input geometry

cfMesh requires geometries in the form of a surface triangulation. For 2D cases, the geometry is given in a
form of a ribbon of triangles with boundary edges in the x-y plane (other orientations are not supported).

The geometry consists of the following entities:

List of points – contains all points in the surface triangulation.

List of triangles – contains all triangles in the surface mesh.

Patches are entities that are transferred onto the volume mesh in the meshing process. Every triangle

in the surface is assigned to a single patch, and cannot be assigned to more than one patch. Each
patch is identified by its name and type. By default, all patch names and types are transferred on the
volume mesh, and are readily available for definition of boundary conditions for the simulation.

Facet subsets are entities, which are not transferred onto the volume mesh in the meshing process.

They are used for definition of meshing settings. Each face subset contains indices of triangles in the
surface mesh. Please note that a triangle in the surface mesh can be contained in more than one
subset.

Feature edges are treated as constraints in the meshing process. Surface points where three or more

feature edges meet are treated as corners. Feature edges can be generated by the
surfaceFeatureEdges utility.

The user must define all sharp features transferred by the cfMesh prior to the meshing process. The edges at
the border between the two patches and the feature edges are handled as sharp features in the meshing
process. Other edges in the triangulation are not constrained. Figure 8 shows a surface mesh with a patch
highlighted in green, a facet subset coloured in blue and user-selected feature edges coloured in red.

Figure 8 – Geometry with entities

 7

The file formats suggested for meshing are: fms, ftr, and stl. In addition, the geometry can be imported in all
formats supported by the surfaceConvert utility, which comes with OpenFOAM®. In addition, cfMesh also

provides additional utilities for conversion of surface mesh into fms and from fms to other formats. However,
the three suggested formats support definition of patches, which are transferred onto the volume mesh by
default. Other formats can also be used for meshing but they do not support definition of patches in the input
geometry and all faces at the boundary of the resulting volume mesh end up in a single patch.

The preferred format for cfMesh is fms, designed to hold all relevant information for setting up a meshing job.

It stores patches, subsets, and feature edges in a single file. In addition, it is the only format, which can store

all geometric entities into a single file, and the users are strongly encouraged to use it. An example of the

surface mesh written in fms is depicted in Figure 9.

Figure 9 – Structure of the fms geometry file format

 8

4. Required dictionaries and available settings

4.1. Dictionaries

The meshing process is steered by the settings provided in a meshDict dictionary located in the system
directory of the case. For parallel meshing using MPI, a decomposeParDict located in the system directory of
a case is required, and the number of nodes used for the parallel run must match the numberOfSubdomains
entry in decomposeParDict. Other entries in decomposeParDict are not required.

The resulting volume mesh is written in the polyMesh directory inside the constant directory. The settings
available in meshDict will be handled in the remainder of this section.

4.2. Mandatory settings in meshDict

cfMesh requires only two mandatory settings (see Figure 10) to start a meshing process:

 surfaceFile points to a geometry file. The path to the geometry file is relative to the path of the case
directory.

 maxCellSize represent the default cell size used for the meshing job. It is the maximum cell size
generated in the domain.

Figure 10 – Mandatory settings

4.3. Refinement settings in meshDict

Quite often a uniform cell size is not satisfactory, and there are many options for local refinement sources in
cfMesh. boundaryCellSize option is used for refinement of cells at the boundary. It is a global option and the

requested cell size is applied everywhere at the boundary. An example is given in Figure 11.
boundaryCellSizeRefinementThickness specifies the distance from the boundary at which the
boundaryCellSize is still applied. minCellSize is a global option which activates automatic refinement of the
mesh template. This option performs refinement in regions where the cells are larger than the estimated
feature size. The scalar value provided with this setting, specifies the smallest cell size allowed by this
procedure, see Figure 11. This option is useful for quick simulation because it can generate meshes in
complex geometry with low user effort. However, if high mesh quality is required, it provides hints where some
mesh refinement is needed.

Figure 11 – boundaryCellSize and minCellSize

 9

localRefinement allows for local refinement regions at the boundary. It is a dictionary of dictionaries and each
dictionary inside the main localRefinement dictionary is named by a patch or facet subset in the geometry that
is used for refinement, see Figure 12. The requested cell size for an entity is controlled by the cellSize
keyword and a scalar value, or by specifying additionalRefinementLevels keyword and the desired number of
refinements relative to the maximum cell size. It is possible to specify patches via regular expressions. The
thickness of the refinement zone can be specified by the refinementThickness option.

Figure 12 – localRefinement

objectRefinement is used for specifying refinement zones inside the volume. The supported objects that can
be used for refinement are: lines, spheres, boxes, and truncated cones. It is specified as a dictionary of
dictionaries, where each dictionary inside the objectRefinement dictionary represents the name of the object
used for refinement. refinementThickness option can be used to specify the thickness of the refinement zone
away from the object. The options required for each type of object is given in Figure 13.

 10

Figure 13 – objectRefinements subdictionary

surfaceMeshRefinement allows for using surface meshes as refinement zones in the mesh. It is specified as a
dictionary of dictionary where each refinement zone is a sub-dictionary inside the surfaceMeshRefinement
dictionary. Surface mesh used for the refinement zone is provided with the surfaceFile keyword, and the
requested cell size for an entity is controlled by the cellSize keyword and a scalar value, or by specifying
additionalRefinementLevels keyword and the desired number of refinements relative to the maximum cell
size. Currently, the setting is used to refine the mesh in the region intersected by the surface mesh. It is
possible to control the thickness of the refinement zone via refinementThickness keyword. An example of the
available settings is given in Figure 14.

 11

Figure 14 – surfaceMeshRefinement

4.4. Keeping/removing of cells in user-defined regions

Meshing workflows implemented in cfMesh are based on the inside-out meshing, and the meshing process
starts by generating the so-called mesh template based on the user-specified cell size. However, if the cell
size is locally larger than the geometry feature size it may result with gaps in the geometry being filled by the
mesh. On the contrary, the mesh in thin parts of the geometry can be lost if the specified cell size is larger
than the local feature size.

keepCellsIntersectingBoundary is a global option which ensures that all cells in the template which are
intersected by the boundary remain part of the template. By default, all meshing workflows keep only cells in
the template which are completely inside the geometry. keepCellsIntersectingBoundary keyword must be
followed by either 1 (active) or 0 (inactive), see Figure 15. Activation of this option can cause locally
connected mesh over a gap, and the problem can be remedied by the checkForGluedMesh option which also
must be followed by either 1 (active) or 0 (inactive).

Figure 15 – keepCellsIntersectingBoundary and checkForGluedMesh

keepCellsIntersectingPatches is an option which preserves cells in the template in the regions specified by the
user. It is a dictionary of dictionaries, and each dictionary inside the main keepCellsIntersectingPatches
dictionary is named by patch or facet subset, see Figure 16. This option is not active when the
keepCellsIntersectingBoundary option is switched on. Patches can be specified using regular expressions.

 12

Figure 16 – keepCellsIntersectingPatches subdictionary

removeCellsIntersectingPatches is an option which removes cells from the template in the regions specified
by the user. It is a dictionary of dictionaries, and each dictionary inside the main
removeCellsIntersectingPatches dictionary is named by a patch or a facet subset as shown in Figure 17. The
option is active when the keepCellsIntersectingBoundary option is switched on. Patches can be specified
using regular expressions.

Figure 17 – removeCellsIntersectingPatches subdictionary

 13

4.5. Boundary layers

Boundary layers in cfMesh are extruded from the boundary faces of the volume mesh towards the interior,

and cannot be extruded prior to the meshing process. In addition, their thickness is controlled by the cell size
specified at the boundary and the mesher tends to produce layers of similar thickness to the cell size. Layers
in cfMesh can span over multiple patches if they share concave edges or corners with valence greater than
three. All boundary layer settings are provided inside a boundaryLayers dictionary, shown in Figure 18. The
options are:

 nLayers specifies the number of layers which will be generated in the mesh. It is not mandatory. In
case it is not specified the meshing workflow generates the default number of layers, which is either
one or zero.

 thicknessRatio is a ratio between the thickness of the two successive layer. It is not mandatory. The
ratio must be larger than 1. The default value is 1.

 maxFirstLayerThickness ensures that the thickness of the first boundary layer never exceeds the
specified value. It is not mandatory.

patchBoundaryLayers setting is a dictionary which is used for specifying local properties of boundary layers
for individual patches. It is possible to specify nLayers, thicknessRatio and maxFirstLayerThickness for each
patch individually within a dictionary with the name equal to the patch name. By default, the number of layers
generated at a patch is governed by the global number of layers, or the maximum number of layers specified
at any of the patches which form a continuous layer together with the existing patch. allowDiscontinuity option
ensures that the number of layers required for a patch shall not spread to other patches in the same layer.
Patches can be specified using regular expressions.

Figure 18 – boundaryLayers subdictionary

 14

4.6. Renaming patches

The settings presented in this section are used for changing of patch names and patch types during the
meshing process. The settings are provided inside a renameBoundary dictionary with the following options:

 newPatchNames is a dictionary inside the renameBoundary dictionary. It contains dictionaries with
names of patches which shall be renamed. For each patch it is possible to specify the new name or
the new patch type with the settings:

o newName keyword is followed by the new name for the given patch. The setting is not
mandatory.

o type keyword is followed by the new type for the given patch. The setting is not mandatory.

 defaultName is a new name for all patches except the ones specified in newPatchNames dictionary.
The setting is not mandatory.

 defaultType sets the new type for all patches except the ones specified in newPatchNames directory.
The setting is not mandatory.

Patch names can be specified using regular expressions. An example is given in Figure 19.

Figure 19 – renameBoundary subdictionary

 15

4.7. Enforcing geometry constraints

Sometimes it is not possible to capture all geometric features during the meshing process and the acceptance
criteria are not met. enforceGeometryConstraints option stops the meshing process when it is not possible to
capture all features of the input geometry. When active, it stops the meshing process and writes a subset of
points that had to be moved away from the geometry in order to yield a valid mesh. An example is given in
Figure 20.

Figure 20 – enforceGeometryConstraints

 16

5. Utilities

copySurfaceParts

It copies surface facets in a specified facet subset into a new surface mesh.

extrudeEdgesInto2DSurface

This utility extrudes edges written as feature edges in the geometry into a ribbon of triangles required for 2D

mesh generation. Generated triangles are stored in a single patch.

FLMAToSurface

It converts geometry from AVL's flma format into the format readable by cfMesh. Cell selections defined in

the input file are transferred as facet subsets.

FMSToSurface

The utility converts the data in a fms file into several files which can be imported into ParaView.

FMSToVTK

Converts fms file into ParaView’s vtm file, containing all data available in an fms file.

FPMAToMesh

Is a utility for importing volume meshes from AVL's fpma format. Selections defined on the input mesh are

transferred as subsets.

importSurfaceAsSubset

The ustility matches the triangles of the surface mesh used for meshing with the other other surface, and
create a facet subset in the original surface.

improveSymmetryPlanes

OpenFOAM is very sensitive to the position of points in the symmetry plane. This utility calculates the
regression plane for all vertices belonging to a symmetry plane, and ensures that all vertices lie in a plane.

mergeSurfacePatches

The utility allow the user to specify the patches in the surface mesh which shall be merge together.

meshToFPMAposition

This utility converts the mesh into the AVL's fpma format.

patchesToSubsets

It converts patches in the geometry into facet subsets.

preparePar

It creates processor directories required for MPI parallelisation. The number of processor directories is

dependent on the numberOfSubdmains specified in decomposeParDict.

 17

removeSurfaceFacets

It is a utility for removing facets from the surface mesh. The facets that shall be removed are given by a patch

name or a facet subset.

subsetToPatch

It creates a patch in the surface mesh consisting of facets in the given facet subset.

surfaceFeatureEdges

It is used for generating feature edges in the geometry. In case the output is a fms file, generated edges are

stored as feature edges. Otherwise it generates patches bounded by the selected feature edges.

surfaceGenerateBoundingBox

It generates a box around the geometry. It does not resolve self-intersections in case the box intersects with

the rest of the geometry.

surfaceToFMS

A converter from common surface triangulation formats into fms.

Python utilities

extractFeatureEdges.py

A script to extract feature edges from geometries created in Salome.

salomeTriSurf.py

A script for extracting a fms file from the geometry created in Salome.

Appendix A: Installation instructions

The simplest way to install cfMesh is to download the installer for OpenFOAM® and cfMesh from the

company website www.c-fields.com.

If you want to build it from source, please download the source of cfMesh from www.c-fields.com. Open the

archive by typing tar xzf cfMesh-v1.0.1.tgz in a Linux shell, and check that you have the OpenFOAM®

environment set up. The build is started by the Allwmake script within the cfMesh directory.

http://www.c-fields.com/
http://www.c-fields.com/

