/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright (C) 2004-2007 Hrvoje Jasak \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Application elasticPlasticSolidFoam Description Transient/steady-state segregated finite-volume solver for small strain elastic plastic solid bodies. Displacement increment field DU is solved for using a total Lagrangian approach, also generating the strain tensor field epsilon, the plastic strain field epsilonP and stress tensor field sigma. With optional multi-material solid interface correction ensuring correct tractions on multi-material interfaces. Author A. Karac, A. Ivankovic. Solver re-organised by P. Cardiff Multi-material correction by Tukovic et al. 2012 \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "plasticityModel.H" #include "solidInterface.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { # include "setRootCase.H" # include "createTime.H" # include "createMesh.H" # include "createFields.H" # include "readDivDSigmaExpMethod.H" # include "createSolidInterface.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // Info<< "\nCalculating displacement field\n" << endl; for (runTime++; !runTime.end(); runTime++) { Info<< "Time: " << runTime.timeName() << nl << endl; # include "readStressedFoamControls.H" int iCorr = 0; scalar initialResidual = 0; scalar relativeResidual = GREAT; lduMatrix::solverPerformance solverPerf; lduMatrix::debug = 0; const volSymmTensorField& DEpsilonP = rheology.DEpsilonP(); do { DU.storePrevIter(); # include "calculateDivDSigmaExp.H" fvVectorMatrix DUEqn ( fvm::d2dt2(rho, DU) == fvm::laplacian(2*muf + lambdaf, DU, "laplacian(DDU,DU)") + divDSigmaExp - fvc::div(2*muf*(mesh.Sf() & fvc::interpolate(DEpsilonP))) ); if(solidInterfaceCorr) { solidInterfacePtr->correct(DUEqn); } solverPerf = DUEqn.solve(); if(iCorr == 0) { initialResidual = solverPerf.initialResidual(); } DU.relax(); if(solidInterfaceCorr) { gradDU = solidInterfacePtr->grad(DU); } else { gradDU = fvc::grad(DU); } # include "calculateRelativeResidual.H" rheology.correct(); mu = rheology.newMu(); lambda = rheology.newLambda(); muf = fvc::interpolate(rheology.newMu()); lambdaf = fvc::interpolate(rheology.newLambda()); if(solidInterfaceCorr) { solidInterfacePtr->modifyProperties(muf, lambdaf); } Info << "\tTime " << runTime.value() << ", Corrector " << iCorr << ", Solving for " << DU.name() << " using " << solverPerf.solverName() << ", residual = " << solverPerf.initialResidual() << endl; } while ( solverPerf.initialResidual() > convergenceTolerance && ++iCorr < nCorr ); Info << nl << "Time " << runTime.value() << ", Solving for " << DU.name() << ", Initial residual = " << initialResidual << ", Final residual = " << solverPerf.initialResidual() << ", No outer iterations " << iCorr << endl; lduMatrix::debug = 1; # include "calculateDEpsilonDSigma.H" U += DU; epsilon += DEpsilon; epsilonP += rheology.DEpsilonP(); sigma += DSigma; rheology.updateYieldStress(); # include "writeFields.H" Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" << " ClockTime = " << runTime.elapsedClockTime() << " s" << nl << endl; } Info<< "End\n" << endl; return(0); } // ************************************************************************* //