/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | foam-extend: Open Source CFD \\ / O peration | \\ / A nd | For copyright notice see file Copyright \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of foam-extend. foam-extend is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. foam-extend is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with foam-extend. If not, see . Application calculateCourantNumber Description Simple utility which calculate the Courant number for solid mechanics models. Author Philip Cardiff UCD \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "constitutiveModel.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { # include "setRootCase.H" # include "createTime.H" # include "createMesh.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // Info<< "\nCalculating Courant number\n" << endl; // Calculate Courant number for every face // Mechanical properties volVectorField U ( IOobject ( "U", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::NO_WRITE ), mesh, dimensionedVector("zero", dimLength, vector::zero) ); volSymmTensorField sigma ( IOobject ( "sigma", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::NO_WRITE ), mesh, dimensionedSymmTensor("zero", dimForce/dimArea, symmTensor::zero) ); constitutiveModel rheology(sigma, U); volScalarField mu = rheology.mu(); volScalarField lambda = rheology.lambda(); volScalarField rho = rheology.rho(); surfaceScalarField Ef = fvc::interpolate(mu*(3*lambda + 2*mu)/(lambda+mu), "E"); surfaceScalarField nuf = fvc::interpolate(lambda/(2*(lambda+mu)), "nu"); surfaceScalarField rhof = fvc::interpolate(rho); surfaceScalarField waveVelocity = Foam::sqrt(Ef*(1 - nuf)/(rhof*(1 + nuf)*(1 - 2*nuf))); // Courant number scalarField Co = waveVelocity.internalField()*runTime.deltaT().value() *mesh.surfaceInterpolation::deltaCoeffs().internalField(); // Calculate required time-step for a Courant number of 1.0 scalar requiredDeltaT = 1.0 / gMax ( mesh.surfaceInterpolation::deltaCoeffs().internalField() *waveVelocity.internalField() ); scalar averageCo = gAverage(Co); scalar maxCo = gMax(Co); scalar averageWaveVel = gAverage(waveVelocity); scalar maxWaveVel = gMax(waveVelocity); Info<< "\nCourant Number\n\tmean: " << averageCo << "\n\tmax: " << maxCo << nl << "Wave velocity magnitude\n\tmean " << averageWaveVel << "\n\tmax: " << maxWaveVel << nl << "Time step required for a maximum Courant number of 1.0 is " << requiredDeltaT << endl; Info<< "\nEnd\n" << endl; return(0); } // ************************************************************************* //