/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration |
\\ / A nd | For copyright notice see file Copyright
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see .
Description
Manipulates mesh elements.
Actions are:
(boundary)points:
- move
(boundary)edges:
- split and move introduced point
(boundary)faces:
- split(triangulate) and move introduced point
edges:
- collapse
cells:
- split into polygonal base pyramids around newly introduced mid
point
Is a bit of a loose collection of mesh change drivers.
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "objectRegistry.H"
#include "Time.H"
#include "polyMesh.H"
#include "directTopoChange.H"
#include "mapPolyMesh.H"
#include "boundaryCutter.H"
#include "cellSplitter.H"
#include "edgeCollapser.H"
#include "meshTools.H"
#include "Pair.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Locate point on patch. Returns (mesh) point label.
label findPoint(const primitivePatch& pp, const point& nearPoint)
{
const pointField& points = pp.points();
const labelList& meshPoints = pp.meshPoints();
// Find nearest and next nearest
scalar minDistSqr = GREAT;
label minI = -1;
scalar almostMinDistSqr = GREAT;
label almostMinI = -1;
forAll(meshPoints, i)
{
label pointI = meshPoints[i];
scalar distSqr = magSqr(nearPoint - points[pointI]);
if (distSqr < minDistSqr)
{
almostMinDistSqr = minDistSqr;
almostMinI = minI;
minDistSqr = distSqr;
minI = pointI;
}
else if (distSqr < almostMinDistSqr)
{
almostMinDistSqr = distSqr;
almostMinI = pointI;
}
}
// Decide if nearPoint unique enough.
Info<< "Found to point " << nearPoint << nl
<< " nearest point : " << minI
<< " distance " << Foam::sqrt(minDistSqr)
<< " at " << points[minI] << nl
<< " next nearest point : " << almostMinI
<< " distance " << Foam::sqrt(almostMinDistSqr)
<< " at " << points[almostMinI] << endl;
if (almostMinDistSqr < 4*minDistSqr)
{
Info<< "Next nearest too close to nearest. Aborting" << endl;
return -1;
}
else
{
return minI;
}
}
// Locate edge on patch. Return mesh edge label.
label findEdge
(
const primitiveMesh& mesh,
const primitivePatch& pp,
const point& nearPoint
)
{
const pointField& localPoints = pp.localPoints();
const pointField& points = pp.points();
const labelList& meshPoints = pp.meshPoints();
const edgeList& edges = pp.edges();
// Find nearest and next nearest
scalar minDist = GREAT;
label minI = -1;
scalar almostMinDist = GREAT;
label almostMinI = -1;
forAll(edges, edgeI)
{
const edge& e = edges[edgeI];
pointHit pHit(e.line(localPoints).nearestDist(nearPoint));
if (pHit.hit())
{
if (pHit.distance() < minDist)
{
almostMinDist = minDist;
almostMinI = minI;
minDist = pHit.distance();
minI = meshTools::findEdge
(
mesh,
meshPoints[e[0]],
meshPoints[e[1]]
);
}
else if (pHit.distance() < almostMinDist)
{
almostMinDist = pHit.distance();
almostMinI = meshTools::findEdge
(
mesh,
meshPoints[e[0]],
meshPoints[e[1]]
);
}
}
}
if (minI == -1)
{
Info<< "Did not find edge close to point " << nearPoint << endl;
return -1;
}
// Decide if nearPoint unique enough.
Info<< "Found to point " << nearPoint << nl
<< " nearest edge : " << minI
<< " distance " << minDist << " endpoints "
<< mesh.edges()[minI].line(points) << nl
<< " next nearest edge : " << almostMinI
<< " distance " << almostMinDist << " endpoints "
<< mesh.edges()[almostMinI].line(points) << nl
<< endl;
if (almostMinDist < 2*minDist)
{
Info<< "Next nearest too close to nearest. Aborting" << endl;
return -1;
}
else
{
return minI;
}
}
// Find face on patch. Return mesh face label.
label findFace
(
const primitiveMesh& mesh,
const primitivePatch& pp,
const point& nearPoint
)
{
const pointField& points = pp.points();
// Find nearest and next nearest
scalar minDist = GREAT;
label minI = -1;
scalar almostMinDist = GREAT;
label almostMinI = -1;
forAll(pp, patchFaceI)
{
pointHit pHit(pp[patchFaceI].nearestPoint(nearPoint, points));
if (pHit.hit())
{
if (pHit.distance() < minDist)
{
almostMinDist = minDist;
almostMinI = minI;
minDist = pHit.distance();
minI = patchFaceI + mesh.nInternalFaces();
}
else if (pHit.distance() < almostMinDist)
{
almostMinDist = pHit.distance();
almostMinI = patchFaceI + mesh.nInternalFaces();
}
}
}
if (minI == -1)
{
Info<< "Did not find face close to point " << nearPoint << endl;
return -1;
}
// Decide if nearPoint unique enough.
Info<< "Found to point " << nearPoint << nl
<< " nearest face : " << minI
<< " distance " << minDist
<< " to face centre " << mesh.faceCentres()[minI] << nl
<< " next nearest face : " << almostMinI
<< " distance " << almostMinDist
<< " to face centre " << mesh.faceCentres()[almostMinI] << nl
<< endl;
if (almostMinDist < 2*minDist)
{
Info<< "Next nearest too close to nearest. Aborting" << endl;
return -1;
}
else
{
return minI;
}
}
// Find cell with cell centre close to given point.
label findCell(const primitiveMesh& mesh, const point& nearPoint)
{
label cellI = mesh.findCell(nearPoint);
if (cellI != -1)
{
scalar distToCcSqr = magSqr(nearPoint - mesh.cellCentres()[cellI]);
const labelList& cPoints = mesh.cellPoints()[cellI];
label minI = -1;
scalar minDistSqr = GREAT;
forAll(cPoints, i)
{
label pointI = cPoints[i];
scalar distSqr = magSqr(nearPoint - mesh.points()[pointI]);
if (distSqr < minDistSqr)
{
minDistSqr = distSqr;
minI = pointI;
}
}
// Decide if nearPoint unique enough.
Info<< "Found to point " << nearPoint << nl
<< " nearest cell : " << cellI
<< " distance " << Foam::sqrt(distToCcSqr)
<< " to cell centre " << mesh.cellCentres()[cellI] << nl
<< " nearest mesh point : " << minI
<< " distance " << Foam::sqrt(minDistSqr)
<< " to " << mesh.points()[minI] << nl
<< endl;
if (minDistSqr < 4*distToCcSqr)
{
Info<< "Mesh point too close to nearest cell centre. Aborting"
<< endl;
cellI = -1;
}
}
return cellI;
}
// Main program:
int main(int argc, char *argv[])
{
argList::validOptions.insert("overwrite", "");
# include "setRootCase.H"
# include "createTime.H"
runTime.functionObjects().off();
# include "createPolyMesh.H"
const word oldInstance = mesh.pointsInstance();
bool overwrite = args.optionFound("overwrite");
Info<< "Reading modifyMeshDict\n" << endl;
IOdictionary dict
(
IOobject
(
"modifyMeshDict",
runTime.system(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
// Read all from the dictionary.
List > pointsToMove(dict.lookup("pointsToMove"));
List > edgesToSplit(dict.lookup("edgesToSplit"));
List > facesToTriangulate
(
dict.lookup("facesToTriangulate")
);
bool cutBoundary =
(
pointsToMove.size()
|| edgesToSplit.size()
|| facesToTriangulate.size()
);
List > edgesToCollapse(dict.lookup("edgesToCollapse"));
bool collapseEdge = edgesToCollapse.size();
List > cellsToPyramidise(dict.lookup("cellsToSplit"));
bool cellsToSplit = cellsToPyramidise.size();
//List >
// cellsToCreate(dict.lookup("cellsToCreate"));
Info<< "Read from " << dict.name() << nl
<< " Boundary cutting module:" << nl
<< " points to move :" << pointsToMove.size() << nl
<< " edges to split :" << edgesToSplit.size() << nl
<< " faces to triangulate:" << facesToTriangulate.size() << nl
<< " Cell splitting module:" << nl
<< " cells to split :" << cellsToPyramidise.size() << nl
<< " Edge collapsing module:" << nl
<< " edges to collapse :" << edgesToCollapse.size() << nl
//<< " cells to create :" << cellsToCreate.size() << nl
<< endl;
if
(
(cutBoundary && collapseEdge)
|| (cutBoundary && cellsToSplit)
|| (collapseEdge && cellsToSplit)
)
{
FatalErrorIn(args.executable())
<< "Used more than one mesh modifying module "
<< "(boundary cutting, cell splitting, edge collapsing)" << nl
<< "Please do them in separate passes." << exit(FatalError);
}
// Get calculating engine for all of outside
const SubList outsideFaces
(
mesh.faces(),
mesh.nFaces() - mesh.nInternalFaces(),
mesh.nInternalFaces()
);
primitivePatch allBoundary(outsideFaces, mesh.points());
// Look up mesh labels and convert to input for boundaryCutter.
bool validInputs = true;
Info<< nl << "Looking up points to move ..." << nl << endl;
Map pointToPos(pointsToMove.size());
forAll(pointsToMove, i)
{
const Pair& pts = pointsToMove[i];
label pointI = findPoint(allBoundary, pts.first());
if (pointI == -1 || !pointToPos.insert(pointI, pts.second()))
{
Info<< "Could not insert mesh point " << pointI
<< " for input point " << pts.first() << nl
<< "Perhaps the point is already marked for moving?" << endl;
validInputs = false;
}
}
Info<< nl << "Looking up edges to split ..." << nl << endl;
Map > edgeToCuts(edgesToSplit.size());
forAll(edgesToSplit, i)
{
const Pair& pts = edgesToSplit[i];
label edgeI = findEdge(mesh, allBoundary, pts.first());
if
(
edgeI == -1
|| !edgeToCuts.insert(edgeI, List(1, pts.second()))
)
{
Info<< "Could not insert mesh edge " << edgeI
<< " for input point " << pts.first() << nl
<< "Perhaps the edge is already marked for cutting?" << endl;
validInputs = false;
}
}
Info<< nl << "Looking up faces to triangulate ..." << nl << endl;
Map faceToDecompose(facesToTriangulate.size());
forAll(facesToTriangulate, i)
{
const Pair& pts = facesToTriangulate[i];
label faceI = findFace(mesh, allBoundary, pts.first());
if (faceI == -1 || !faceToDecompose.insert(faceI, pts.second()))
{
Info<< "Could not insert mesh face " << faceI
<< " for input point " << pts.first() << nl
<< "Perhaps the face is already marked for splitting?" << endl;
validInputs = false;
}
}
Info<< nl << "Looking up cells to convert to pyramids around"
<< " cell centre ..." << nl << endl;
Map cellToPyrCentre(cellsToPyramidise.size());
forAll(cellsToPyramidise, i)
{
const Pair& pts = cellsToPyramidise[i];
label cellI = findCell(mesh, pts.first());
if (cellI == -1 || !cellToPyrCentre.insert(cellI, pts.second()))
{
Info<< "Could not insert mesh cell " << cellI
<< " for input point " << pts.first() << nl
<< "Perhaps the cell is already marked for splitting?" << endl;
validInputs = false;
}
}
Info<< nl << "Looking up edges to collapse ..." << nl << endl;
Map edgeToPos(edgesToCollapse.size());
forAll(edgesToCollapse, i)
{
const Pair& pts = edgesToCollapse[i];
label edgeI = findEdge(mesh, allBoundary, pts.first());
if (edgeI == -1 || !edgeToPos.insert(edgeI, pts.second()))
{
Info<< "Could not insert mesh edge " << edgeI
<< " for input point " << pts.first() << nl
<< "Perhaps the edge is already marked for collaping?" << endl;
validInputs = false;
}
}
if (!validInputs)
{
Info<< nl << "There was a problem in one of the inputs in the"
<< " dictionary. Not modifying mesh." << endl;
}
else if (cellToPyrCentre.size())
{
Info<< nl << "All input cells located. Modifying mesh." << endl;
// Mesh change engine
cellSplitter cutter(mesh);
// Topo change container
directTopoChange meshMod(mesh);
// Insert commands into meshMod
cutter.setRefinement(cellToPyrCentre, meshMod);
// Do changes
autoPtr morphMap = meshMod.changeMesh(mesh, false);
if (morphMap().hasMotionPoints())
{
mesh.movePoints(morphMap().preMotionPoints());
}
cutter.updateMesh(morphMap());
if (!overwrite)
{
runTime++;
}
else
{
mesh.setInstance(oldInstance);
}
// Write resulting mesh
Info << "Writing modified mesh to time " << runTime.timeName() << endl;
mesh.write();
}
else if (edgeToPos.size())
{
Info<< nl << "All input edges located. Modifying mesh." << endl;
// Mesh change engine
edgeCollapser cutter(mesh);
pointField newPoints(mesh.points());
// Get new positions and construct collapse network
forAllConstIter(Map, edgeToPos, iter)
{
label edgeI = iter.key();
const edge& e = mesh.edges()[edgeI];
cutter.collapseEdge(edgeI, e[0]);
newPoints[e[0]] = iter();
}
// Move master point to destination.
mesh.movePoints(newPoints);
// Topo change container
directTopoChange meshMod(mesh);
// Insert
cutter.setRefinement(meshMod);
// Do changes
autoPtr morphMap = meshMod.changeMesh(mesh, false);
if (morphMap().hasMotionPoints())
{
mesh.movePoints(morphMap().preMotionPoints());
}
// Not implemented yet:
//cutter.updateMesh(morphMap());
if (!overwrite)
{
runTime++;
}
else
{
mesh.setInstance(oldInstance);
}
// Write resulting mesh
Info << "Writing modified mesh to time " << runTime.timeName() << endl;
mesh.write();
}
else
{
Info<< nl << "All input points located. Modifying mesh." << endl;
// Mesh change engine
boundaryCutter cutter(mesh);
// Topo change container
directTopoChange meshMod(mesh);
// Insert commands into meshMod
cutter.setRefinement
(
pointToPos,
edgeToCuts,
Map(0), // Faces to split diagonally
faceToDecompose, // Faces to triangulate
meshMod
);
// Do changes
autoPtr morphMap = meshMod.changeMesh(mesh, false);
if (morphMap().hasMotionPoints())
{
mesh.movePoints(morphMap().preMotionPoints());
}
cutter.updateMesh(morphMap());
if (!overwrite)
{
runTime++;
}
else
{
mesh.setInstance(oldInstance);
}
// Write resulting mesh
Info << "Writing modified mesh to time " << runTime.timeName() << endl;
mesh.write();
}
Info << nl << "End" << endl;
return 0;
}
// ************************************************************************* //