/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | foam-extend: Open Source CFD \\ / O peration | Version: 4.1 \\ / A nd | Web: http://www.foam-extend.org \\/ M anipulation | For copyright notice see file Copyright ------------------------------------------------------------------------------- License This file is part of foam-extend. foam-extend is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. foam-extend is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with foam-extend. If not, see . Application shallowWaterFoam Description Transient solver for inviscid shallow-water equations with rotation. If the geometry is 3D then it is assumed to be one layers of cells and the component of the velocity normal to gravity is removed. \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "pimpleControl.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { #include "setRootCase.H" #include "createTime.H" #include "createMesh.H" pimpleControl pimple(mesh); #include "readGravitationalAcceleration.H" #include "createFields.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // Info<< "\nStarting time loop\n" << endl; while (runTime.loop()) { Info<< "\n Time = " << runTime.timeName() << nl << endl; #include "CourantNo.H" // --- Pressure-velocity PIMPLE corrector loop while (pimple.loop()) { surfaceScalarField phiv("phiv", phi/fvc::interpolate(h)); fvVectorMatrix hUEqn ( fvm::ddt(hU) + fvm::div(phiv, hU) ); hUEqn.relax(); if (pimple.momentumPredictor()) { if (rotating) { solve(hUEqn + (F ^ hU) == -magg*h*fvc::grad(h + h0)); } else { solve(hUEqn == -magg*h*fvc::grad(h + h0)); } // Constrain the momentum to be in the geometry if 3D geometry if (mesh.nGeometricD() == 3) { hU -= (gHat & hU)*gHat; hU.correctBoundaryConditions(); } } // --- Pressure corrector loop while (pimple.correct()) { surfaceScalarField hf = fvc::interpolate(h); volScalarField rUA = 1.0/hUEqn.A(); surfaceScalarField ghrUAf = magg*fvc::interpolate(h*rUA); surfaceScalarField phih0 = ghrUAf*mesh.magSf()*fvc::snGrad(h0); if (rotating) { hU = rUA*(hUEqn.H() - (F ^ hU)); } else { hU = rUA*hUEqn.H(); } phi = (fvc::interpolate(hU) & mesh.Sf()) + fvc::ddtPhiCorr(rUA, h, hU, phi) - phih0; while (pimple.correctNonOrthogonal()) { fvScalarMatrix hEqn ( fvm::ddt(h) + fvc::div(phi) - fvm::laplacian(ghrUAf, h) ); hEqn.solve ( mesh.solutionDict().solver ( h.select(pimple.finalInnerIter()) ) ); if (pimple.finalNonOrthogonalIter()) { phi += hEqn.flux(); } } hU -= rUA*h*magg*fvc::grad(h + h0); // Constrain the momentum to be in the geometry if 3D geometry if (mesh.nGeometricD() == 3) { hU -= (gHat & hU)*gHat; } hU.correctBoundaryConditions(); } } U == hU/h; hTotal == h + h0; runTime.write(); Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" << " ClockTime = " << runTime.elapsedClockTime() << " s" << nl << endl; } Info<< "End\n" << endl; return 0; } // ************************************************************************* //