/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | foam-extend: Open Source CFD \\ / O peration | \\ / A nd | For copyright notice see file Copyright \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of foam-extend. foam-extend is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. foam-extend is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with foam-extend. If not, see . Application stressComponents Description Calculates and writes the scalar fields of the six components of the stress tensor sigma for each time. \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "incompressible/singlePhaseTransportModel/singlePhaseTransportModel.H" #include "zeroGradientFvPatchFields.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { timeSelector::addOptions(); # include "setRootCase.H" # include "createTime.H" instantList timeDirs = timeSelector::select0(runTime, args); # include "createMesh.H" forAll(timeDirs, timeI) { runTime.setTime(timeDirs[timeI], timeI); Info<< "Time = " << runTime.timeName() << endl; IOobject Uheader ( "U", runTime.timeName(), mesh, IOobject::MUST_READ ); // Check U exists if (Uheader.headerOk()) { mesh.readUpdate(); Info<< " Reading U" << endl; volVectorField U(Uheader, mesh); # include "createPhi.H" singlePhaseTransportModel laminarTransport(U, phi); volSymmTensorField sigma ( IOobject ( "sigma", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::AUTO_WRITE ), laminarTransport.nu()*2*dev(symm(fvc::grad(U))) ); volScalarField sigmaxx ( IOobject ( "sigmaxx", runTime.timeName(), mesh, IOobject::NO_READ ), sigma.component(symmTensor::XX) ); sigmaxx.write(); volScalarField sigmayy ( IOobject ( "sigmayy", runTime.timeName(), mesh, IOobject::NO_READ ), sigma.component(symmTensor::YY) ); sigmayy.write(); volScalarField sigmazz ( IOobject ( "sigmazz", runTime.timeName(), mesh, IOobject::NO_READ ), sigma.component(symmTensor::ZZ) ); sigmazz.write(); volScalarField sigmaxy ( IOobject ( "sigmaxy", runTime.timeName(), mesh, IOobject::NO_READ ), sigma.component(symmTensor::XY) ); sigmaxy.write(); volScalarField sigmaxz ( IOobject ( "sigmaxz", runTime.timeName(), mesh, IOobject::NO_READ ), sigma.component(symmTensor::XZ) ); sigmaxz.write(); volScalarField sigmayz ( IOobject ( "sigmayz", runTime.timeName(), mesh, IOobject::NO_READ ), sigma.component(symmTensor::YZ) ); sigmayz.write(); volVectorField Ub ( IOobject ( "Ub", runTime.timeName(), mesh, IOobject::NO_READ ), U, zeroGradientFvPatchVectorField::typeName ); Ub.correctBoundaryConditions(); Ub.write(); volScalarField sigmaUn ( IOobject ( "sigmaUn", runTime.timeName(), mesh, IOobject::NO_READ ), 0.0*sigma.component(symmTensor::YZ) ); forAll(sigmaUn.boundaryField(), patchI) { sigmaUn.boundaryField()[patchI] = ( mesh.boundary()[patchI].nf() & sigma.boundaryField()[patchI] )().component(vector::X); } sigmaUn.write(); } else { Info<< " No U" << endl; } Info<< endl; } Info<< "End" << endl; return 0; } // ************************************************************************* //