/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright held by original author \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Application boundaryFoam Description Steady-state solver for 1D turbulent flow, typically to generate boundary layer conditions at an inlet, for use in a simulation. Boundary layer code to calculate the U, k and epsilon distributions. Used to create inlet boundary conditions for experimental comparisons for which U and k have not been measured. Turbulence model is runtime selectable. \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "incompressible/singlePhaseTransportModel/singlePhaseTransportModel.H" #include "incompressible/RASModel/RASModel.H" #include "wallFvPatch.H" #include "makeGraph.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { # include "setRootCase.H" # include "createTime.H" # include "createMesh.H" # include "createFields.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // Info<< "\nStarting time loop\n" << endl; for (runTime++; !runTime.end(); runTime++) { Info<< "Time = " << runTime.timeName() << nl << endl; fvVectorMatrix divR = turbulence->divDevReff(U); divR.source() = flowMask & divR.source(); fvVectorMatrix UEqn ( divR == gradP ); UEqn.relax(); UEqn.solve(); // Correct driving force for a constant mass flow rate dimensionedVector UbarStar = flowMask & U.weightedAverage(mesh.V()); U += (Ubar - UbarStar); gradP += (Ubar - UbarStar)/(1.0/UEqn.A())().weightedAverage(mesh.V()); scalar wallShearStress = flowDirection & turbulence->R()()[0] & wallNormal; scalar yplusWall = Foam::sqrt(mag(wallShearStress))*y[0]/laminarTransport.nu()[0]; Info<< "Uncorrected Ubar = " << (flowDirection & UbarStar.value())<< tab << "pressure gradient = " << (flowDirection & gradP.value()) << tab << "min y+ = " << yplusWall << endl; turbulence->correct(); if (runTime.outputTime()) { volSymmTensorField R ( IOobject ( "R", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::AUTO_WRITE ), turbulence->R() ); runTime.write(); const word& gFormat = runTime.graphFormat(); makeGraph(y, flowDirection & U, "Uf", gFormat); makeGraph(y, laminarTransport.nu(), gFormat); makeGraph(y, turbulence->k(), gFormat); makeGraph(y, turbulence->epsilon(), gFormat); //makeGraph(y, flowDirection & R & flowDirection, "Rff", gFormat); //makeGraph(y, wallNormal & R & wallNormal, "Rww", gFormat); //makeGraph(y, flowDirection & R & wallNormal, "Rfw", gFormat); //makeGraph(y, sqrt(R.component(tensor::XX)), "u", gFormat); //makeGraph(y, sqrt(R.component(tensor::YY)), "v", gFormat); //makeGraph(y, sqrt(R.component(tensor::ZZ)), "w", gFormat); makeGraph(y, R.component(tensor::XY), "uv", gFormat); makeGraph(y, mag(fvc::grad(U)), "gammaDot", gFormat); } Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" << " ClockTime = " << runTime.elapsedClockTime() << " s" << nl << endl; } Info<< "End\n" << endl; return(0); } // ************************************************************************* //