/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | foam-extend: Open Source CFD \\ / O peration | Version: 3.2 \\ / A nd | Web: http://www.foam-extend.org \\/ M anipulation | For copyright notice see file Copyright ------------------------------------------------------------------------------- License This file is part of foam-extend. foam-extend is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. foam-extend is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with foam-extend. If not, see . Description Generate analytical solution for a thick-walled cylinder with a temperature gradient. Temperature field T and stress field sigma and generated. Based on solution outlined in Timoshenko, Theory of Elasticity. Author philip.cardiff@ucd.ie \*---------------------------------------------------------------------------*/ #include "fvCFD.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { # include "setRootCase.H" # include "createTime.H" # include "createMesh.H" runTime++; Info<< "Writing analytical solution for a plain strain cylinder " << "with concentric hole,\nwhere" << "\n\tinner radius = 0.5" << "\n\touter radius = 0.7" << "\n\tinner temperature = 100" << "\n\touter temperature = 0" << "\n\tinner pressure = 0" << "\n\touter pressure = 0" << "\n\tE = 200e9" << "\n\tu = 0.3" << "\n\talpha = 1e-5" << nl << endl; //- inner and outer radii and temperatures scalar a = 0.5; scalar b = 0.7; scalar Ti = 100; scalar To = 0; //- mechanical and thermal properties scalar E = 200e9; scalar nu = 0.3; scalar alpha = 1e-5; const volVectorField& C = mesh.C(); //- radial coordinate volScalarField radii ( sqrt ( sqr(C.component(vector::X)) + sqr(C.component(vector::Y)) )/dimensionedScalar("one", dimLength, 1) ); const scalarField& rIn = radii.internalField(); Info << "Writing analytical termpature field" << endl; //- create T field volScalarField T ( IOobject ( "analyticalT", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::AUTO_WRITE ), ((Ti - To)/Foam::log(b/a))*Foam::log(b/radii) ); T.write(); //- create sigma field Info << "\nWriting analytical sigmaR field" << endl; volScalarField sigmaR ( IOobject ( "sigmaR", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::AUTO_WRITE ), ((alpha*E*(Ti - To))/(2*(1 - nu)*Foam::log(b/a)))* ( -Foam::log(b/radii) - (sqr(a)/(sqr(b) - sqr(a)))*(1 - sqr(b)/sqr(radii))*Foam::log(b/a) ) ); sigmaR.write(); Info << "\nWriting analytical sigmaTheta field" << endl; volScalarField sigmaTheta ( IOobject ( "sigmaTheta", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::AUTO_WRITE ), ((alpha*E*(Ti - To))/(2*(1 - nu)*Foam::log(b/a)))* ( 1 - Foam::log(b/radii) - (sqr(a)/(sqr(b) - sqr(a)))*(1 + sqr(b)/sqr(radii))*Foam::log(b/a) ) ); sigmaTheta.write(); Info << "\nWriting analytical sigmaZ field" << endl; volScalarField sigmaZ ( IOobject ( "sigmaZ", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::AUTO_WRITE ), // Timoshenko says this but I am not sure I am not sure the BCs in // the z direction // ((alpha*E*(Ti - To))/(2*(1 - nu)*Foam::log(b/a)))* // (1 - 2*Foam::log(b/radii) - ( 2*sqr(a)/(sqr(b) - sqr(a)))*Foam::log(b/a)); 0.3*(sigmaR + sigmaTheta) - E*alpha*(T) ); sigmaZ.write(); //- create theta field volScalarField yOverX ( "yOverX", Foam::max ( scalar(-1), Foam::min ( scalar(1), mesh.C().component(vector::Y)/ stabilise ( mesh.C().component(vector::X), dimensionedScalar("small", dimLength, SMALL) ) ) ) ); volScalarField theta ( IOobject ( "theta", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::NO_WRITE ), Foam::atan(yOverX) ); //- rotation matrix to convert polar stresses to cartesian volTensorField rotMat ( IOobject ( "rotMat", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::NO_WRITE ), mesh, dimensionedTensor("zero", dimless, tensor::zero) ); tensorField& rotMatIn = rotMat.internalField(); const scalarField tIn = theta.internalField(); forAll (rotMatIn, celli) { const scalar& t = tIn[celli]; rotMatIn[celli] = tensor ( Foam::cos(t), Foam::sin(t), 0, -Foam::sin(t), Foam::cos(t), 0, 0, 0, 1 ); } forAll (rotMat.boundaryField(), patchi) { forAll (rotMat.boundaryField()[patchi], facei) { const scalar& t = theta.boundaryField()[patchi][facei]; rotMat.boundaryField()[patchi][facei] = tensor ( Foam::cos(t), Foam::sin(t), 0, -Foam::sin(t), Foam::cos(t), 0, 0, 0, 1 ); } } volSymmTensorField sigma ( IOobject ( "analyticalSigma", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::AUTO_WRITE ), mesh, dimensionedSymmTensor("zero", dimForce/dimArea, symmTensor::zero) ); { symmTensorField& sigmaIn = sigma.internalField(); const scalarField& rIn = sigmaR.internalField(); const scalarField& tIn = sigmaTheta.internalField(); const scalarField& zIn = sigmaZ.internalField(); forAll (sigmaIn, celli) { symmTensor sigmaCart ( rIn[celli], 0, 0, tIn[celli], 0, zIn[celli] ); const tensor& rot = rotMatIn[celli]; sigmaIn[celli] = symm(rot.T() & sigmaCart & rot); // for general 2-D plain strain problems, the axial stress is: // (which is not equal to the solution by Timoshenko... hmmmnn) // sigmaIn[celli][symmTensor::ZZ] = // 0.3*(sigmaIn[celli][symmTensor::XX] // + sigmaIn[celli][symmTensor::YY]) // - E*alpha*(T.internalField()[celli]); } } forAll (sigma.boundaryField(), patchi) { symmTensorField& pSigma = sigma.boundaryField()[patchi]; const scalarField& pR = sigmaR.boundaryField()[patchi]; const scalarField& pT = sigmaTheta.boundaryField()[patchi]; const scalarField& pZ = sigmaZ.boundaryField()[patchi]; const tensorField pRot = rotMat.boundaryField()[patchi]; forAll (pSigma, facei) { const tensor& rot = pRot[facei]; symmTensor sigmaCart ( pR[facei], 0, 0, pT[facei], 0, pZ[facei] ); pSigma[facei] = symm(rot.T() & sigmaCart & rot); } } Info << "\nWriting analytical sigma tensor" << endl; sigma.write(); Info << nl << "End" << endl; return 0; } // ************************************************************************* //