/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | foam-extend: Open Source CFD \\ / O peration | Version: 3.2 \\ / A nd | Web: http://www.foam-extend.org \\/ M anipulation | For copyright notice see file Copyright ------------------------------------------------------------------------------- License This file is part of foam-extend. foam-extend is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. foam-extend is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with foam-extend. If not, see . Application viscoElasticSolidFoam Description visco-elastic small strain solver using finite volume method, using an incremental approach Author Zeljko Tukovic FSB Zagreb \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "constitutiveModel.H" //#include "componentReferenceList.H" //#include "patchToPatchInterpolation.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { # include "setRootCase.H" # include "createTime.H" # include "createMesh.H" # include "createFields.H" # include "createHistory.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // Info<< "\nStarting time loop\n" << endl; Info<< "Note: the results must be written for every time-step" << " as they are used to calculate the current stress" << endl; lduMatrix::debug = 0; scalar m = 0.5; surfaceVectorField n = mesh.Sf()/mesh.magSf(); while(runTime.loop()) { Info<< "Time = " << runTime.timeName() << nl << endl; # include "readSolidMechanicsControls.H" volScalarField mu = rheology.mu(m*runTime.deltaT().value()); volScalarField lambda = rheology.lambda(m*runTime.deltaT().value()); surfaceScalarField muf = fvc::interpolate(mu); surfaceScalarField lambdaf = fvc::interpolate(lambda); Info << "average mu = " << average(muf.internalField()) << endl; Info << "average lambda = " << average(lambdaf.internalField()) << endl; int iCorr = 0; lduMatrix::solverPerformance solverPerf; scalar initialResidual = 1.0; scalar residual = 1.0; surfaceSymmTensorField DSigmaCorrf = fvc::interpolate(DSigmaCorr); //label nCrackedFaces = 0; // cracking loop if you use cohesive boundaries //do //{ do { surfaceTensorField sGradDU = (I - n*n)&fvc::interpolate(gradDU); DU.storePrevIter(); fvVectorMatrix DUEqn ( rho*fvm::d2dt2(DU) == fvm::laplacian(2*muf+lambdaf, DU, "laplacian(DDU,DU)") + fvc::div ( mesh.magSf()* ( - (muf + lambdaf)*(fvc::snGrad(DU)&(I - n*n)) + lambdaf*tr(sGradDU&(I - n*n))*n + muf*(sGradDU&n) + (n&DSigmaCorrf) ) ) ); // // add an increment of gravity on the first time-step // if (runTime.timeIndex() == 1) // { // DUEqn -= (rho*g); // } solverPerf = DUEqn.solve(); DU.relax(); if (iCorr == 0) { initialResidual = solverPerf.initialResidual(); } gradDU = fvc::grad(DU); # include "calculateDSigma.H" # include "calcResidual.H" if (iCorr % infoFrequency == 0) { Info<< "\tTime " << runTime.value() << ", Corrector " << iCorr << ", Solving for " << U.name() << " using " << solverPerf.solverName() << ", res = " << solverPerf.initialResidual() << ", rel res = " << residual << ", inner iters = " << solverPerf.nIterations() << endl; } } while ( // solverPerf.initialResidual() > convergenceTolerance residual > convergenceTolerance && ++iCorr < nCorr ); Info<< "Solving for " << DU.name() << " using " << solverPerf.solverName() << " solver" << ", Initial residula = " << initialResidual << ", Final residual = " << solverPerf.initialResidual() << ", No outer iterations " << iCorr << ", Relative error: " << residual << endl; //# include "updateCrack.H" //} //while(nCrackedFaces > 0); U += DU; # include "calculateSigma.H" # include "writeFields.H" # include "writeHistory.H" Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" << " ClockTime = " << runTime.elapsedClockTime() << " s" << nl << endl; } Info<< "End\n" << endl; return(0); } // ************************************************************************* //