{ // Solve the rothalpy equation // Create relative velocity Urel == U; mrfZones.relativeVelocity(Urel); // Bound the relative velocity to preserve the i to h conversion bound // HJ, 22/Mar/2017 volScalarField magUrel = mag(Urel); if (max(magUrel) > UMax) { volScalarField UrelLimiter = pos(magUrel - UMax)*UMax/(magUrel + smallU) + neg(magUrel - UMax); UrelLimiter.max(scalar(0)); UrelLimiter.min(scalar(1)); Urel *= UrelLimiter; Urel.correctBoundaryConditions(); } // Create rotational velocity (= omega x r) Urot == U - Urel; T.storePrevIter(); fvScalarMatrix iEqn ( fvm::div(phi, i) + fvm::SuSp(-fvc::div(phi), i) - fvm::laplacian(turbulence->alphaEff(), i) == // Viscous heating: note sign (devRhoReff has a minus in it) - (turbulence->devRhoReff() && fvc::grad(Urel)) ); iEqn.relax(); iEqn.solve(); // Calculate enthalpy out of rothalpy h = i + 0.5*(magSqr(Urot) - magSqr(Urel)); h.correctBoundaryConditions(); thermo.correct(); psis = thermo.psi()/thermo.Cp()*thermo.Cv(); }