/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | foam-extend: Open Source CFD \\ / O peration | Version: 3.2 \\ / A nd | Web: http://www.foam-extend.org \\/ M anipulation | For copyright notice see file Copyright ------------------------------------------------------------------------------- License This file is part of foam-extend. foam-extend is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. foam-extend is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with foam-extend. If not, see . Application rhopSonicFoam Description Pressure-density-based compressible flow solver. \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "weighted.H" #include "gaussConvectionScheme.H" #include "multivariateGaussConvectionScheme.H" #include "MUSCL.H" #include "LimitedScheme.H" #include "boundaryTypes.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { # include "setRootCase.H" # include "createTime.H" # include "createMesh.H" # include "readThermodynamicProperties.H" # include "createFields.H" # include "createTimeControls.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // Info<< "\nStarting time loop\n" << endl; while (runTime.loop()) { Info<< "Time = " << runTime.value() << nl << endl; # include "readPISOControls.H" scalar HbyAblend = readScalar(piso.lookup("HbyAblend")); # include "readTimeControls.H" scalar CoNum = max ( mesh.surfaceInterpolation::deltaCoeffs() *mag(phiv)/mesh.magSf() ).value()*runTime.deltaT().value(); Info<< "Max Courant Number = " << CoNum << endl; # include "setDeltaT.H" for (int outerCorr = 0; outerCorr < nOuterCorr; outerCorr++) { magRhoU = mag(rhoU); H = (rhoE + p)/rho; fv::multivariateGaussConvectionScheme mvConvection ( mesh, fields, phiv, mesh.schemesDict().divScheme("div(phiv,rhoUH)") ); solve ( fvm::ddt(rho) + mvConvection.fvmDiv(phiv, rho) ); surfaceScalarField rhoUWeights = mvConvection.interpolationScheme()()(magRhoU)() .weights(magRhoU); weighted rhoUScheme(rhoUWeights); fvVectorMatrix rhoUEqn ( fvm::ddt(rhoU) + fv::gaussConvectionScheme(mesh, phiv, rhoUScheme) .fvmDiv(phiv, rhoU) ); solve(rhoUEqn == -fvc::grad(p)); solve ( fvm::ddt(rhoE) + mvConvection.fvmDiv(phiv, rhoE) == - mvConvection.fvcDiv(phiv, p) ); T = (rhoE - 0.5*rho*magSqr(rhoU/rho))/Cv/rho; psi = 1.0/(R*T); p = rho/psi; for (int corr = 0; corr < nCorr; corr++) { volScalarField rrhoUA = 1.0/rhoUEqn.A(); surfaceScalarField rrhoUAf("rrhoUAf", fvc::interpolate(rrhoUA)); volVectorField HbyA = rrhoUA*rhoUEqn.H(); surfaceScalarField HbyAWeights = HbyAblend*mesh.weights() + (1.0 - HbyAblend)* LimitedScheme , limitFuncs::magSqr> (mesh, phi, IStringStream("HbyA")()).weights(HbyA); phi = ( surfaceInterpolationScheme::interpolate (HbyA, HbyAWeights) & mesh.Sf() ) + HbyAblend*fvc::ddtPhiCorr(rrhoUA, rho, rhoU, phi); surfaceScalarField phiGradp = rrhoUAf*mesh.magSf()*fvc::snGrad(p); phi -= phiGradp; # include "resetPhiPatches.H" surfaceScalarField rhof = mvConvection.interpolationScheme()()(rho)() .interpolate(rho); phiv = phi/rhof; fvScalarMatrix pEqn ( fvm::ddt(psi, p) + mvConvection.fvcDiv(phiv, rho) + fvc::div(phiGradp) - fvm::laplacian(rrhoUAf, p) ); pEqn.solve(); phi += phiGradp + pEqn.flux(); rho = psi*p; rhof = mvConvection.interpolationScheme()()(rho)() .interpolate(rho); phiv = phi/rhof; rhoU = HbyA - rrhoUA*fvc::grad(p); rhoU.correctBoundaryConditions(); } } U = rhoU/rho; runTime.write(); Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" << " ClockTime = " << runTime.elapsedClockTime() << " s" << nl << endl; } Info<< "End\n" << endl; return 0; } // ************************************************************************* //