/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration | Version: 4.0
\\ / A nd | Web: http://www.foam-extend.org
\\/ M anipulation | For copyright notice see file Copyright
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see .
Application
icoDyMFoam
Description
Transient solver for incompressible, laminar flow of Newtonian fluids
with dynamic mesh.
Consistent formulation without time-step and relaxation dependence by Jasak
and Tukovic.
Author
Hrvoje Jasak, Wikki Ltd. All rights reserved.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "dynamicFvMesh.H"
#include "pisoControl.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createDynamicFvMesh.H"
pisoControl piso(mesh);
# include "initContinuityErrs.H"
# include "initTotalVolume.H"
# include "createFields.H"
# include "createControls.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
# include "readControls.H"
# include "checkTotalVolume.H"
# include "CourantNo.H"
# include "setDeltaT.H"
// Make the fluxes absolute
fvc::makeAbsolute(phi, U);
runTime++;
Info<< "Time = " << runTime.timeName() << nl << endl;
bool meshChanged = mesh.update();
reduce(meshChanged, orOp());
# include "volContinuity.H"
if (correctPhi && (mesh.moving() || meshChanged))
{
// Fluxes will be corrected to absolute velocity
// HJ, 6/Feb/2009
# include "correctPhi.H"
}
// Make the fluxes relative to the mesh motion
fvc::makeRelative(phi, U);
if (mesh.moving() && checkMeshCourantNo)
{
# include "meshCourantNo.H"
}
# include "UEqn.H"
// --- PISO loop
// Prepare clean 1/a_p without time derivative contribution
rAU = 1.0/HUEqn.A();
while (piso.correct())
{
// Calculate U from convection-diffusion matrix
U = rAU*HUEqn.H();
// Consistently calculate flux
piso.calcTransientConsistentFlux(phi, U, rAU, ddtUEqn);
adjustPhi(phi, U, p);
// Non-orthogonal pressure corrector loop
while (piso.correctNonOrthogonal())
{
fvScalarMatrix pEqn
(
fvm::laplacian
(
fvc::interpolate(rAU)/piso.aCoeff(U.name()),
p,
"laplacian(rAU," + p.name() + ')'
)
==
fvc::div(phi)
);
pEqn.setReference(pRefCell, pRefValue);
pEqn.solve
(
mesh.solutionDict().solver(p.select(piso.finalInnerIter()))
);
if (piso.finalNonOrthogonalIter())
{
phi -= pEqn.flux();
}
}
# include "movingMeshContinuityErrs.H"
// Consistently reconstruct velocity after pressure equation.
// Note: flux is made relative inside the function
piso.reconstructTransientVelocity(U, phi, ddtUEqn, rAU, p);
}
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return(0);
}
// ************************************************************************* //