/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | foam-extend: Open Source CFD \\ / O peration | Version: 3.2 \\ / A nd | Web: http://www.foam-extend.org \\/ M anipulation | For copyright notice see file Copyright ------------------------------------------------------------------------------- License This file is part of foam-extend. foam-extend is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. foam-extend is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with foam-extend. If not, see . Application blockCoupledScalarTransportFoam Description Solves two coupled transport equations in a block-coupled manner 1) transport equation for a passive scalar 2) diffusion only This resembles heat exchanging flow through a porous medium \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "fieldTypes.H" #include "Time.H" #include "fvMesh.H" #include "fvBlockMatrix.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { # include "setRootCase.H" # include "createTime.H" # include "createMesh.H" # include "createFields.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // Info<< "\nCalculating scalar transport\n" << endl; # include "CourantNo.H" for (runTime++; !runTime.end(); runTime++) { Info<< "Time = " << runTime.timeName() << nl << endl; # include "readSIMPLEControls.H" for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++) { fvScalarMatrix TEqn ( fvm::div(phi, T) - fvm::laplacian(DT, T) == alpha*Ts - fvm::Sp(alpha, T) ); TEqn.relax(); fvScalarMatrix TsEqn ( - fvm::laplacian(DTs, Ts) == alpha*T - fvm::Sp(alpha, Ts) ); TsEqn.relax(); // Prepare block system fvBlockMatrix blockM(blockT); // Insert equations into block Matrix blockM.insertEquation(0, TEqn); blockM.insertEquation(1, TsEqn); // Add off-diagonal coupling terms scalarField coupling(mesh.nCells(), -alpha.value()); blockM.insertEquationCoupling(0, 1, coupling); blockM.insertEquationCoupling(1, 0, coupling); // Update source coupling: coupling terms eliminated from source blockM.updateSourceCoupling(); //- Block coupled solver call blockM.solve(); // Retrieve solution blockM.retrieveSolution(0, T.internalField()); blockM.retrieveSolution(1, Ts.internalField()); T.correctBoundaryConditions(); Ts.correctBoundaryConditions(); } runTime.write(); } Info<< "End\n" << endl; return(0); } // ************************************************************************* //