/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | foam-extend: Open Source CFD \\ / O peration | Version: 3.2 \\ / A nd | Web: http://www.foam-extend.org \\/ M anipulation | For copyright notice see file Copyright ------------------------------------------------------------------------------- License This file is part of foam-extend. foam-extend is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. foam-extend is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with foam-extend. If not, see . Application rhoCentralFoam Description Density-based compressible flow solver based on central-upwind schemes of Kurganov and Tadmor \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "basicPsiThermo.H" #include "zeroGradientFvPatchFields.H" #include "fixedRhoFvPatchScalarField.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { # include "setRootCase.H" # include "createTime.H" # include "createMesh.H" # include "createFields.H" # include "readThermophysicalProperties.H" # include "readTimeControls.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // # include "readFluxScheme.H" dimensionedScalar v_zero("v_zero",dimVolume/dimTime, 0.0); Info<< "\nStarting time loop\n" << endl; while (runTime.run()) { // --- upwind interpolation of primitive fields on faces surfaceScalarField rho_pos = fvc::interpolate(rho, pos, "reconstruct(rho)"); surfaceScalarField rho_neg = fvc::interpolate(rho, neg, "reconstruct(rho)"); surfaceVectorField rhoU_pos = fvc::interpolate(rhoU, pos, "reconstruct(U)"); surfaceVectorField rhoU_neg = fvc::interpolate(rhoU, neg, "reconstruct(U)"); volScalarField rPsi = 1.0/psi; surfaceScalarField rPsi_pos = fvc::interpolate(rPsi, pos, "reconstruct(T)"); surfaceScalarField rPsi_neg = fvc::interpolate(rPsi, neg, "reconstruct(T)"); surfaceScalarField e_pos = fvc::interpolate(e, pos, "reconstruct(T)"); surfaceScalarField e_neg = fvc::interpolate(e, neg, "reconstruct(T)"); surfaceVectorField U_pos = rhoU_pos/rho_pos; surfaceVectorField U_neg = rhoU_neg/rho_neg; surfaceScalarField p_pos = rho_pos*rPsi_pos; surfaceScalarField p_neg = rho_neg*rPsi_neg; surfaceScalarField phiv_pos = U_pos & mesh.Sf(); surfaceScalarField phiv_neg = U_neg & mesh.Sf(); volScalarField c = sqrt(thermo.Cp()/thermo.Cv()*rPsi); surfaceScalarField cSf_pos = fvc::interpolate(c, pos, "reconstruct(T)")*mesh.magSf(); surfaceScalarField cSf_neg = fvc::interpolate(c, neg, "reconstruct(T)")*mesh.magSf(); surfaceScalarField ap = max(max(phiv_pos + cSf_pos, phiv_neg + cSf_neg), v_zero); surfaceScalarField am = min(min(phiv_pos - cSf_pos, phiv_neg - cSf_neg), v_zero); surfaceScalarField a_pos = ap/(ap - am); surfaceScalarField amaxSf("amaxSf", max(mag(am), mag(ap))); surfaceScalarField aSf = am*a_pos; if (fluxScheme == "Tadmor") { aSf = -0.5*amaxSf; a_pos = 0.5; } surfaceScalarField a_neg = (1.0 - a_pos); phiv_pos *= a_pos; phiv_neg *= a_neg; surfaceScalarField aphiv_pos = phiv_pos - aSf; surfaceScalarField aphiv_neg = phiv_neg + aSf; // Reuse amaxSf for the maximum positive and negative fluxes // estimated by the central scheme amaxSf = max(mag(aphiv_pos), mag(aphiv_neg)); #include "compressibleCourantNo.H" #include "readTimeControls.H" #include "setDeltaT.H" runTime++; Info<< "Time = " << runTime.timeName() << nl << endl; surfaceScalarField phi("phi", aphiv_pos*rho_pos + aphiv_neg*rho_neg); surfaceVectorField phiUp = (aphiv_pos*rhoU_pos + aphiv_neg*rhoU_neg) + (a_pos*p_pos + a_neg*p_neg)*mesh.Sf(); surfaceScalarField phiEp = aphiv_pos*(rho_pos*(e_pos + 0.5*magSqr(U_pos)) + p_pos) + aphiv_neg*(rho_neg*(e_neg + 0.5*magSqr(U_neg)) + p_neg) + aSf*p_pos - aSf*p_neg; volTensorField tauMC("tauMC", mu*dev2(Foam::T(fvc::grad(U)))); // --- Solve density solve(fvm::ddt(rho) + fvc::div(phi)); // --- Solve momentum solve(fvm::ddt(rhoU) + fvc::div(phiUp)); U.dimensionedInternalField() = rhoU.dimensionedInternalField() /rho.dimensionedInternalField(); U.correctBoundaryConditions(); rhoU.boundaryField() = rho.boundaryField()*U.boundaryField(); volScalarField rhoBydt(rho/runTime.deltaT()); if (!inviscid) { solve ( fvm::ddt(rho, U) - fvc::ddt(rho, U) - fvm::laplacian(mu, U) - fvc::div(tauMC) ); rhoU = rho*U; } // --- Solve energy surfaceScalarField sigmaDotU = ( ( fvc::interpolate(mu)*mesh.magSf()*fvc::snGrad(U) + (mesh.Sf() & fvc::interpolate(tauMC)) ) & (a_pos*U_pos + a_neg*U_neg) ); solve ( fvm::ddt(rhoE) + fvc::div(phiEp) - fvc::div(sigmaDotU) ); e = rhoE/rho - 0.5*magSqr(U); e.correctBoundaryConditions(); thermo.correct(); rhoE.boundaryField() = rho.boundaryField()* ( e.boundaryField() + 0.5*magSqr(U.boundaryField()) ); if (!inviscid) { volScalarField k("k", thermo.Cp()*mu/Pr); solve ( fvm::ddt(rho, e) - fvc::ddt(rho, e) - fvm::laplacian(thermo.alpha(), e) + fvc::laplacian(thermo.alpha(), e) - fvc::laplacian(k, T) ); thermo.correct(); rhoE = rho*(e + 0.5*magSqr(U)); } p.dimensionedInternalField() = rho.dimensionedInternalField() /psi.dimensionedInternalField(); p.correctBoundaryConditions(); rho.boundaryField() = psi.boundaryField()*p.boundaryField(); runTime.write(); Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" << " ClockTime = " << runTime.elapsedClockTime() << " s" << nl << endl; } Info<< "End\n" << endl; return 0; } // ************************************************************************* //