rho = thermo.rho(); volScalarField A = UEqn.A(); U = UEqn.H()/A; if (transonic) { surfaceScalarField phid ( "phid", fvc::interpolate(psi) *((fvc::interpolate(U) & mesh.Sf()) - fvc::meshPhi(rho, U)) ); for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++) { fvScalarMatrix pEqn ( fvm::ddt(psi, p) + fvm::div(phid, p) - fvm::laplacian(rho/A, p) == Sevap ); pEqn.solve(); if (nonOrth == nNonOrthCorr) { phi == pEqn.flux(); } } } else { phi = fvc::interpolate(rho) *((fvc::interpolate(U) & mesh.Sf()) - fvc::meshPhi(rho, U)); for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++) { fvScalarMatrix pEqn ( fvm::ddt(psi, p) + fvc::div(phi) - fvm::laplacian(rho/A, p) == Sevap ); pEqn.solve(); if (nonOrth == nNonOrthCorr) { phi += pEqn.flux(); } } } #include "rhoEqn.H" #include "compressibleContinuityErrs.H" U -= fvc::grad(p)/A; U.correctBoundaryConditions(); DpDt = fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);