/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration |
\\ / A nd | For copyright notice see file Copyright
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see .
\*---------------------------------------------------------------------------*/
#include "faFieldReconstructor.H"
#include "Time.H"
#include "PtrList.H"
#include "faPatchFields.H"
#include "emptyFaPatch.H"
#include "emptyFaPatchField.H"
#include "emptyFaePatchField.H"
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
template
Foam::tmp >
Foam::faFieldReconstructor::reconstructFaAreaField
(
const IOobject& fieldIoObject
)
{
// Read the field for all the processors
PtrList > procFields
(
procMeshes_.size()
);
forAll (procMeshes_, procI)
{
procFields.set
(
procI,
new GeometricField
(
IOobject
(
fieldIoObject.name(),
procMeshes_[procI].time().timeName(),
procMeshes_[procI](),
IOobject::MUST_READ,
IOobject::NO_WRITE
),
procMeshes_[procI]
)
);
}
// Create the internalField
Field internalField(mesh_.nFaces());
// Create the patch fields
PtrList > patchFields(mesh_.boundary().size());
// Create global mesh patchs starts
labelList gStarts(mesh_.boundary().size(), -1);
if (mesh_.boundary().size() > 0)
{
gStarts[0] = mesh_.nInternalEdges();
}
for(label i=1; i& procField =
procFields[procI];
// Set the face values in the reconstructed field
internalField.rmap
(
procField.internalField(),
faceProcAddressing_[procI]
);
// Set the boundary patch values in the reconstructed field
labelList starts(procMeshes_[procI].boundary().size(), -1);
if(procMeshes_[procI].boundary().size() > 0)
{
starts[0] = procMeshes_[procI].nInternalEdges();
}
for(label i=1; i= 0)
{
// Regular patch. Fast looping
if (!patchFields(curBPatch))
{
patchFields.set
(
curBPatch,
faPatchField::New
(
procField.boundaryField()[patchI],
mesh_.boundary()[curBPatch],
DimensionedField::null(),
faPatchFieldReconstructor
(
mesh_.boundary()[curBPatch].size(),
procField.boundaryField()[patchI].size()
)
)
);
}
const label curPatchStart = gStarts[curBPatch];
// mesh_.boundary()[curBPatch].start();
labelList reverseAddressing(cp.size());
forAll(cp, edgeI)
{
// Subtract one to take into account offsets for
// face direction.
// reverseAddressing[edgeI] = cp[edgeI] - 1 - curPatchStart;
reverseAddressing[edgeI] = cp[edgeI] - curPatchStart;
}
patchFields[curBPatch].rmap
(
procField.boundaryField()[patchI],
reverseAddressing
);
}
else
{
const Field& curProcPatch =
procField.boundaryField()[patchI];
// In processor patches, there's a mix of internal faces (some
// of them turned) and possible cyclics. Slow loop
forAll(cp, edgeI)
{
// Subtract one to take into account offsets for
// face direction.
// label curE = cp[edgeI] - 1;
label curE = cp[edgeI];
// Is the face on the boundary?
if (curE >= mesh_.nInternalEdges())
{
// label curBPatch = mesh_.boundary().whichPatch(curE);
label curBPatch = -1;
forAll (mesh_.boundary(), pI)
{
if
(
curE >= gStarts[pI]
&& curE <
(
gStarts[pI]
+ mesh_.boundary()[pI].labelList::size()
)
)
{
curBPatch = pI;
}
}
if (!patchFields(curBPatch))
{
patchFields.set
(
curBPatch,
faPatchField::New
(
mesh_.boundary()[curBPatch].type(),
mesh_.boundary()[curBPatch],
DimensionedField::null()
)
);
}
// add the edge
// label curPatchEdge =
// mesh_.boundary()
// [curBPatch].whichEdge(curE);
label curPatchEdge = curE - gStarts[curBPatch];
patchFields[curBPatch][curPatchEdge] =
curProcPatch[edgeI];
}
}
}
}
}
forAll(mesh_.boundary(), patchI)
{
// add empty patches
if
(
typeid(mesh_.boundary()[patchI]) == typeid(emptyFaPatch)
&& !patchFields(patchI)
)
{
patchFields.set
(
patchI,
faPatchField::New
(
emptyFaPatchField::typeName,
mesh_.boundary()[patchI],
DimensionedField::null()
)
);
}
}
// Now construct and write the field
// setting the internalField and patchFields
return tmp >
(
new GeometricField
(
IOobject
(
fieldIoObject.name(),
mesh_.time().timeName(),
mesh_(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh_,
procFields[0].dimensions(),
internalField,
patchFields
)
);
}
template
Foam::tmp >
Foam::faFieldReconstructor::reconstructFaEdgeField
(
const IOobject& fieldIoObject
)
{
// Read the field for all the processors
PtrList > procFields
(
procMeshes_.size()
);
forAll (procMeshes_, procI)
{
procFields.set
(
procI,
new GeometricField
(
IOobject
(
fieldIoObject.name(),
procMeshes_[procI].time().timeName(),
procMeshes_[procI](),
IOobject::MUST_READ,
IOobject::NO_WRITE
),
procMeshes_[procI]
)
);
}
// Create the internalField
Field internalField(mesh_.nInternalEdges());
// Create the patch fields
PtrList > patchFields(mesh_.boundary().size());
labelList gStarts(mesh_.boundary().size(), -1);
if(mesh_.boundary().size() > 0)
{
gStarts[0] = mesh_.nInternalEdges();
}
for(label i=1; i& procField =
procFields[procI];
// Set the face values in the reconstructed field
// It is necessary to create a copy of the addressing array to
// take care of the face direction offset trick.
//
{
labelList curAddr(edgeProcAddressing_[procI]);
// forAll (curAddr, addrI)
// {
// curAddr[addrI] -= 1;
// }
internalField.rmap
(
procField.internalField(),
curAddr
);
}
// Set the boundary patch values in the reconstructed field
labelList starts(procMeshes_[procI].boundary().size(), -1);
if(procMeshes_[procI].boundary().size() > 0)
{
starts[0] = procMeshes_[procI].nInternalEdges();
}
for(label i=1; i= 0)
{
// Regular patch. Fast looping
if (!patchFields(curBPatch))
{
patchFields.set
(
curBPatch,
faePatchField::New
(
procField.boundaryField()[patchI],
mesh_.boundary()[curBPatch],
DimensionedField::null(),
faPatchFieldReconstructor
(
mesh_.boundary()[curBPatch].size(),
procField.boundaryField()[patchI].size()
)
)
);
}
const label curPatchStart = gStarts[curBPatch];
// mesh_.boundary()[curBPatch].start();
labelList reverseAddressing(cp.size());
forAll(cp, edgeI)
{
// Subtract one to take into account offsets for
// face direction.
// reverseAddressing[faceI] = cp[faceI] - 1 - curPatchStart;
reverseAddressing[edgeI] = cp[edgeI] - curPatchStart;
}
patchFields[curBPatch].rmap
(
procField.boundaryField()[patchI],
reverseAddressing
);
}
else
{
const Field& curProcPatch =
procField.boundaryField()[patchI];
// In processor patches, there's a mix of internal faces (some
// of them turned) and possible cyclics. Slow loop
forAll(cp, edgeI)
{
// label curF = cp[edgeI] - 1;
label curE = cp[edgeI];
// Is the face turned the right side round
if (curE >= 0)
{
// Is the face on the boundary?
if (curE >= mesh_.nInternalEdges())
{
// label curBPatch =
// mesh_.boundary().whichPatch(curF);
label curBPatch = -1;
forAll (mesh_.boundary(), pI)
{
if
(
curE >= gStarts[pI]
&& curE <
(
gStarts[pI]
+ mesh_.boundary()[pI].labelList::size()
)
)
{
curBPatch = pI;
}
}
if (!patchFields(curBPatch))
{
patchFields.set
(
curBPatch,
faePatchField::New
(
mesh_.boundary()[curBPatch].type(),
mesh_.boundary()[curBPatch],
DimensionedField
::null()
)
);
}
// add the face
// label curPatchFace =
// mesh_.boundary()
// [curBPatch].whichEdge(curF);
label curPatchEdge = curE - gStarts[curBPatch];
patchFields[curBPatch][curPatchEdge] =
curProcPatch[edgeI];
}
else
{
// Internal face
internalField[curE] = curProcPatch[edgeI];
}
}
}
}
}
}
forAll(mesh_.boundary(), patchI)
{
// add empty patches
if
(
typeid(mesh_.boundary()[patchI]) == typeid(emptyFaPatch)
&& !patchFields(patchI)
)
{
patchFields.set
(
patchI,
faePatchField::New
(
emptyFaePatchField::typeName,
mesh_.boundary()[patchI],
DimensionedField::null()
)
);
}
}
// Now construct and write the field
// setting the internalField and patchFields
return tmp >
(
new GeometricField
(
IOobject
(
fieldIoObject.name(),
mesh_.time().timeName(),
mesh_(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh_,
procFields[0].dimensions(),
internalField,
patchFields
)
);
}
// Reconstruct and write all area fields
template
void Foam::faFieldReconstructor::reconstructFaAreaFields
(
const IOobjectList& objects
)
{
const word& fieldClassName =
GeometricField::typeName;
IOobjectList fields = objects.lookupClass(fieldClassName);
if (fields.size())
{
Info<< " Reconstructing " << fieldClassName << "s\n" << endl;
for
(
IOobjectList::const_iterator fieldIter = fields.begin();
fieldIter != fields.end();
++fieldIter
)
{
Info << " " << fieldIter()->name() << endl;
reconstructFaAreaField(*fieldIter())().write();
}
Info<< endl;
}
}
// Reconstruct and write all edge fields
template
void Foam::faFieldReconstructor::reconstructFaEdgeFields
(
const IOobjectList& objects
)
{
const word& fieldClassName =
GeometricField::typeName;
IOobjectList fields = objects.lookupClass(fieldClassName);
if (fields.size())
{
Info<< " Reconstructing " << fieldClassName << "s\n" << endl;
for
(
IOobjectList::const_iterator fieldIter = fields.begin();
fieldIter != fields.end();
++fieldIter
)
{
Info<< " " << fieldIter()->name() << endl;
reconstructFaEdgeField(*fieldIter())().write();
}
Info<< endl;
}
}
// ************************************************************************* //