/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration | Version: 4.0
\\ / A nd | Web: http://www.foam-extend.org
\\/ M anipulation | For copyright notice see file Copyright
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see .
Application
viewFactorGenerator
Description
View factors are calculated based on a face agglomeration array
(finalAgglom generated by faceAgglomerate utility).
Each view factor between the agglomerated faces i and j (Fij) is calculated
using a double integral of the sub-areas composing the agglomaration.
The patches involved in the view factor calculation are taken from the Qr
volScalarField (radiative flux) when is greyDiffusiveRadiationViewFactor
otherwise they are not included.
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "foamTime.H"
#include "fvMesh.H"
#include "volFields.H"
#include "surfaceFields.H"
#include "distributedTriSurfaceMesh.H"
#include "triSurfaceTools.H"
#include "mapDistribute.H"
#include "OFstream.H"
#include "meshTools.H"
#include "plane.H"
#include "uindirectPrimitivePatch.H"
#include "DynamicField.H"
#include "IFstream.H"
#include "unitConversion.H"
#include "mathematicalConstants.H"
#include "scalarMatrices.H"
#include "CompactListList.H"
#include "labelIOList.H"
#include "labelIOList.H"
#include "scalarIOList.H"
#include "singleCellFvMesh.H"
#include "IOdictionary.H"
#include "fixedValueFvPatchFields.H"
using namespace Foam;
void writeRays
(
const fileName& fName,
const pointField& compactCf,
const pointField& myFc,
const labelListList& visibleFaceFaces
)
{
OFstream str(fName);
label vertI = 0;
Pout<< "Dumping rays to " << str.name() << endl;
forAll(myFc, faceI)
{
const labelList visFaces = visibleFaceFaces[faceI];
forAll(visFaces, faceRemote)
{
label compactI = visFaces[faceRemote];
const point& remoteFc = compactCf[compactI];
meshTools::writeOBJ(str, myFc[faceI]);
vertI++;
meshTools::writeOBJ(str, remoteFc);
vertI++;
str << "l " << vertI-1 << ' ' << vertI << nl;
}
}
string cmd("objToVTK " + fName + " " + fName.lessExt() + ".vtk");
Pout<< "cmd:" << cmd << endl;
system(cmd);
}
scalar calculateViewFactorFij
(
const vector& i,
const vector& j,
const vector& dAi,
const vector& dAj
)
{
vector r = i - j;
scalar rMag = mag(r);
scalar dAiMag = mag(dAi);
scalar dAjMag = mag(dAj);
vector ni = dAi/dAiMag;
vector nj = dAj/dAjMag;
scalar cosThetaJ = mag(nj & r)/rMag;
scalar cosThetaI = mag(ni & r)/rMag;
return
(
(cosThetaI*cosThetaJ*dAjMag*dAiMag)
/(sqr(rMag)*mathematicalConstant::pi)
);
}
void insertMatrixElements
(
const globalIndex& globalNumbering,
const label fromProcI,
const labelListList& globalFaceFaces,
const scalarListList& viewFactors,
scalarSquareMatrix& matrix
)
{
forAll(viewFactors, faceI)
{
const scalarList& vf = viewFactors[faceI];
const labelList& globalFaces = globalFaceFaces[faceI];
label globalI = globalNumbering.toGlobal(fromProcI, faceI);
forAll(globalFaces, i)
{
matrix[globalI][globalFaces[i]] = vf[i];
}
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "addRegionOption.H"
#include "setRootCase.H"
#include "createTime.H"
#include "createNamedMesh.H"
// Read view factor dictionary
IOdictionary viewFactorDict
(
IOobject
(
"viewFactorsDict",
runTime.constant(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::NO_WRITE
)
);
const bool writeViewFactors =
viewFactorDict.lookupOrDefault("writeViewFactorMatrix", false);
const bool dumpRays =
viewFactorDict.lookupOrDefault("dumpRays", false);
const label debug = viewFactorDict.lookupOrDefault("debug", 0);
volScalarField Qr
(
IOobject
(
"Qr",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
),
mesh
);
// Read agglomeration map
labelListIOList finalAgglom
(
IOobject
(
"finalAgglom",
mesh.facesInstance(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
)
);
// Create the coarse mesh using agglomeration
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if (debug)
{
Info << "\nCreating single cell mesh..." << endl;
}
singleCellFvMesh coarseMesh
(
IOobject
(
mesh.name(),
runTime.timeName(),
runTime,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
finalAgglom
);
// Calculate total number of fine and coarse faces
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
label nCoarseFaces = 0; //total number of coarse faces
label nFineFaces = 0; //total number of fine faces
const polyBoundaryMesh& patches = mesh.boundaryMesh();
const polyBoundaryMesh& coarsePatches = coarseMesh.boundaryMesh();
labelList viewFactorsPatches(patches.size());
const volScalarField::GeometricBoundaryField& Qrb = Qr.boundaryField();
label count = 0;
forAll(Qrb, patchI)
{
const polyPatch& pp = patches[patchI];
const fvPatchScalarField& QrpI = Qrb[patchI];
if ((isA(QrpI)) && (pp.size() > 0))
{
viewFactorsPatches[count] = QrpI.patch().index();
nCoarseFaces += coarsePatches[patchI].size();
nFineFaces += patches[patchI].size();
count ++;
}
}
viewFactorsPatches.resize(count--);
// total number of coarse faces
label totalNCoarseFaces = nCoarseFaces;
reduce(totalNCoarseFaces, sumOp());
if (Pstream::master())
{
Info << "\nTotal number of coarse faces: "<< totalNCoarseFaces << endl;
}
if (Pstream::master() && debug)
{
Pout << "\nView factor patches included in the calculation : "
<< viewFactorsPatches << endl;
}
// Collect local Cf and Sf on coarse mesh
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DynamicList localCoarseCf(nCoarseFaces);
DynamicList localCoarseSf(nCoarseFaces);
forAll (viewFactorsPatches, i)
{
const label patchID = viewFactorsPatches[i];
const polyPatch& pp = patches[patchID];
const labelList& agglom = finalAgglom[patchID];
label nAgglom = max(agglom)+1;
labelListList coarseToFine(invertOneToMany(nAgglom, agglom));
const labelList& coarsePatchFace = coarseMesh.patchFaceMap()[patchID];
const pointField& coarseCf = coarseMesh.Cf().boundaryField()[patchID];
const pointField& coarseSf = coarseMesh.Sf().boundaryField()[patchID];
forAll(coarseCf, faceI)
{
point cf = coarseCf[faceI];
const label coarseFaceI = coarsePatchFace[faceI];
const labelList& fineFaces = coarseToFine[coarseFaceI];
// Construct single face
uindirectPrimitivePatch upp
(
UIndirectList(pp, fineFaces),
pp.points()
);
List availablePoints
(
upp.faceCentres().size()
+ upp.localPoints().size()
);
SubList
(
availablePoints,
upp.faceCentres().size()
).assign(upp.faceCentres());
SubList
(
availablePoints,
upp.localPoints().size(),
upp.faceCentres().size()
).assign(upp.localPoints());
point cfo = cf;
scalar dist = GREAT;
forAll(availablePoints, iPoint)
{
point cfFine = availablePoints[iPoint];
if(mag(cfFine-cfo) < dist)
{
dist = mag(cfFine-cfo);
cf = cfFine;
}
}
point sf = coarseSf[faceI];
localCoarseCf.append(cf);
localCoarseSf.append(sf);
}
}
// Collect remote Cf and Sf on coarse mesh
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
List remoteCoarseCf(Pstream::nProcs());
List remoteCoarseSf(Pstream::nProcs());
remoteCoarseCf[Pstream::myProcNo()] = localCoarseCf;
remoteCoarseSf[Pstream::myProcNo()] = localCoarseSf;
// Collect remote Cf and Sf on fine mesh
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
List remoteFineCf(Pstream::nProcs());
List remoteFineSf(Pstream::nProcs());
remoteCoarseCf[Pstream::myProcNo()] = localCoarseCf;
remoteCoarseSf[Pstream::myProcNo()] = localCoarseSf;
// Distribute local coarse Cf and Sf for shooting rays
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Pstream::gatherList(remoteCoarseCf);
Pstream::scatterList(remoteCoarseCf);
Pstream::gatherList(remoteCoarseSf);
Pstream::scatterList(remoteCoarseSf);
// Set up searching engine for obstacles
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#include "searchingEngine.H"
// Determine rays between coarse face centres
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DynamicList rayStartFace(nCoarseFaces + 0.01*nCoarseFaces);
DynamicList rayEndFace(rayStartFace.size());
globalIndex globalNumbering(nCoarseFaces);
// Return rayStartFace in local index andrayEndFace in global index
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#include "shootRays.H"
// Calculate number of visible faces from local index
labelList nVisibleFaceFaces(nCoarseFaces, 0);
forAll(rayStartFace, i)
{
nVisibleFaceFaces[rayStartFace[i]]++;
}
labelListList visibleFaceFaces(nCoarseFaces);
label nViewFactors = 0;
forAll(nVisibleFaceFaces, faceI)
{
visibleFaceFaces[faceI].setSize(nVisibleFaceFaces[faceI]);
nViewFactors += nVisibleFaceFaces[faceI];
}
// - Construct compact numbering
// - return map from remote to compact indices
// (per processor (!= myProcNo) a map from remote index to compact index)
// - construct distribute map
// - renumber rayEndFace into compact addressing
List > compactMap(Pstream::nProcs());
mapDistribute map(globalNumbering, rayEndFace, compactMap);
labelListIOList IOsubMap
(
IOobject
(
"subMap",
mesh.facesInstance(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
map.subMap()
);
IOsubMap.write();
labelListIOList IOconstructMap
(
IOobject
(
"constructMap",
mesh.facesInstance(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
map.constructMap()
);
IOconstructMap.write();
IOList consMapDim
(
IOobject
(
"constructMapDim",
mesh.facesInstance(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
List(1, map.constructSize())
);
consMapDim.write();
// visibleFaceFaces has:
// (local face, local viewed face) = compact viewed face
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
nVisibleFaceFaces = 0;
forAll(rayStartFace, i)
{
label faceI = rayStartFace[i];
label compactI = rayEndFace[i];
visibleFaceFaces[faceI][nVisibleFaceFaces[faceI]++] = compactI;
}
// Construct data in compact addressing
// I need coarse Sf (Ai), fine Sf (dAi) and fine Cf(r) to calculate Fij
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
pointField compactCoarseCf(map.constructSize(), pTraits::zero);
pointField compactCoarseSf(map.constructSize(), pTraits::zero);
List > compactFineSf(map.constructSize());
List > compactFineCf(map.constructSize());
DynamicList compactPatchId(map.constructSize());
// Insert my coarse local values
SubList(compactCoarseSf, nCoarseFaces).assign(localCoarseSf);
SubList(compactCoarseCf, nCoarseFaces).assign(localCoarseCf);
// Insert my fine local values
label compactI = 0;
forAll(viewFactorsPatches, i)
{
label patchID = viewFactorsPatches[i];
const labelList& agglom = finalAgglom[patchID];
label nAgglom = max(agglom)+1;
labelListList coarseToFine(invertOneToMany(nAgglom, agglom));
const labelList& coarsePatchFace = coarseMesh.patchFaceMap()[patchID];
forAll(coarseToFine, coarseI)
{
compactPatchId.append(patchID);
List& fineCf = compactFineCf[compactI];
List& fineSf = compactFineSf[compactI++];
const label coarseFaceI = coarsePatchFace[coarseI];
const labelList& fineFaces = coarseToFine[coarseFaceI];
fineCf.setSize(fineFaces.size());
fineSf.setSize(fineFaces.size());
fineCf = UIndirectList
(
mesh.Cf().boundaryField()[patchID],
coarseToFine[coarseFaceI]
);
fineSf = UIndirectList
(
mesh.Sf().boundaryField()[patchID],
coarseToFine[coarseFaceI]
);
}
}
// Do all swapping
map.distribute(compactCoarseSf);
map.distribute(compactCoarseCf);
map.distribute(compactFineCf);
map.distribute(compactFineSf);
map.distribute(compactPatchId);
// Plot all rays between visible faces.
if (dumpRays)
{
writeRays
(
runTime.path()/"allVisibleFaces.obj",
compactCoarseCf,
remoteCoarseCf[Pstream::myProcNo()],
visibleFaceFaces
);
}
// Fill local view factor matrix
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
scalarListIOList F
(
IOobject
(
"F",
mesh.facesInstance(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
nCoarseFaces
);
label totalPatches = coarsePatches.size();
reduce(totalPatches, maxOp());
// Matrix sum in j(Fij) for each i (if enclosure sum = 1
scalarSquareMatrix sumViewFactorPatch(totalPatches, 0);
scalarList patchArea(totalPatches, scalar(0));
if (Pstream::master())
{
Info<< "\nCalculating view factors..." << endl;
}
if (mesh.nSolutionD() == 3)
{
forAll (localCoarseSf, coarseFaceI)
{
const List& localFineSf = compactFineSf[coarseFaceI];
const vector Ai = sum(localFineSf);
const List& localFineCf = compactFineCf[coarseFaceI];
const label fromPatchId = compactPatchId[coarseFaceI];
patchArea[fromPatchId] += mag(Ai);
const labelList& visCoarseFaces = visibleFaceFaces[coarseFaceI];
forAll(visCoarseFaces, visCoarseFaceI)
{
F[coarseFaceI].setSize(visCoarseFaces.size());
label compactJ = visCoarseFaces[visCoarseFaceI];
const List& remoteFineSj = compactFineSf[compactJ];
const List& remoteFineCj = compactFineCf[compactJ];
const label toPatchId = compactPatchId[compactJ];
scalar Fij = 0;
forAll (localFineSf, i)
{
const vector& dAi = localFineSf[i];
const vector& dCi = localFineCf[i];
forAll (remoteFineSj, j)
{
const vector& dAj = remoteFineSj[j];
const vector& dCj = remoteFineCj[j];
scalar dIntFij = calculateViewFactorFij
(
dCi,
dCj,
dAi,
dAj
);
Fij += dIntFij;
}
}
F[coarseFaceI][visCoarseFaceI] = Fij/mag(Ai);
sumViewFactorPatch[fromPatchId][toPatchId] += Fij;
}
}
}
else if (mesh.nSolutionD() == 2)
{
const boundBox& box = mesh.bounds();
const Vector& dirs = mesh.geometricD();
vector emptyDir = vector::zero;
forAll(dirs, i)
{
if (dirs[i] == -1)
{
emptyDir[i] = 1.0;
}
}
scalar wideBy2 = (box.span() & emptyDir)*2.0;
forAll(localCoarseSf, coarseFaceI)
{
const vector& Ai = localCoarseSf[coarseFaceI];
const vector& Ci = localCoarseCf[coarseFaceI];
vector Ain = Ai/mag(Ai);
vector R1i = Ci + (mag(Ai)/wideBy2)*(Ain ^ emptyDir);
vector R2i = Ci - (mag(Ai)/wideBy2)*(Ain ^ emptyDir) ;
const label fromPatchId = compactPatchId[coarseFaceI];
patchArea[fromPatchId] += mag(Ai);
const labelList& visCoarseFaces = visibleFaceFaces[coarseFaceI];
forAll (visCoarseFaces, visCoarseFaceI)
{
F[coarseFaceI].setSize(visCoarseFaces.size());
label compactJ = visCoarseFaces[visCoarseFaceI];
const vector& Aj = compactCoarseSf[compactJ];
const vector& Cj = compactCoarseCf[compactJ];
const label toPatchId = compactPatchId[compactJ];
vector Ajn = Aj/mag(Aj);
vector R1j = Cj + (mag(Aj)/wideBy2)*(Ajn ^ emptyDir);
vector R2j = Cj - (mag(Aj)/wideBy2)*(Ajn ^ emptyDir);
scalar d1 = mag(R1i - R2j);
scalar d2 = mag(R2i - R1j);
scalar s1 = mag(R1i - R1j);
scalar s2 = mag(R2i - R2j);
scalar Fij = mag((d1 + d2) - (s1 + s2))/(4.0*mag(Ai)/wideBy2);
F[coarseFaceI][visCoarseFaceI] = Fij;
sumViewFactorPatch[fromPatchId][toPatchId] += Fij*mag(Ai);
}
}
}
if (Pstream::master())
{
Info << "Writing view factor matrix..." << endl;
}
// Write view factors matrix in listList form
F.write();
reduce(sumViewFactorPatch, sumOp());
reduce(patchArea, sumOp());
if (Pstream::master() && debug)
{
forAll(viewFactorsPatches, i)
{
label patchI = viewFactorsPatches[i];
forAll(viewFactorsPatches, i)
{
label patchJ = viewFactorsPatches[i];
Info << "F" << patchI << patchJ << ": "
<< sumViewFactorPatch[patchI][patchJ]/patchArea[patchI]
<< endl;
}
}
}
if (writeViewFactors)
{
volScalarField viewFactorField
(
IOobject
(
"viewFactorField",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("viewFactorField", dimless, 0)
);
label compactI = 0;
forAll(viewFactorsPatches, i)
{
label patchID = viewFactorsPatches[i];
const labelList& agglom = finalAgglom[patchID];
label nAgglom = max(agglom)+1;
labelListList coarseToFine(invertOneToMany(nAgglom, agglom));
const labelList& coarsePatchFace =
coarseMesh.patchFaceMap()[patchID];
forAll(coarseToFine, coarseI)
{
const scalar Fij = sum(F[compactI]);
const label coarseFaceID = coarsePatchFace[coarseI];
const labelList& fineFaces = coarseToFine[coarseFaceID];
forAll (fineFaces, fineId)
{
const label faceID = fineFaces[fineId];
viewFactorField.boundaryField()[patchID][faceID] = Fij;
}
compactI++;
}
}
viewFactorField.write();
}
// Invert compactMap (from processor+localface to compact) to go
// from compact to processor+localface (expressed as a globalIndex)
// globalIndex globalCoarFaceNum(coarseMesh.nFaces());
labelList compactToGlobal(map.constructSize());
// Local indices first (note: are not in compactMap)
for (label i = 0; i < globalNumbering.localSize(); i++)
{
compactToGlobal[i] = globalNumbering.toGlobal(i);
}
forAll(compactMap, procI)
{
const Map& localToCompactMap = compactMap[procI];
forAllConstIter(Map, localToCompactMap, iter)
{
compactToGlobal[iter()] = globalNumbering.toGlobal
(
procI,
iter.key()
);
}
}
if (Pstream::master())
{
scalarSquareMatrix Fmatrix(totalNCoarseFaces, 0);
labelListList globalFaceFaces(visibleFaceFaces.size());
// Create globalFaceFaces needed to insert view factors
// in F to the global matrix Fmatrix
forAll(globalFaceFaces, faceI)
{
globalFaceFaces[faceI] = renumber
(
compactToGlobal,
visibleFaceFaces[faceI]
);
}
labelListIOList IOglobalFaceFaces
(
IOobject
(
"globalFaceFaces",
mesh.facesInstance(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
globalFaceFaces
);
IOglobalFaceFaces.write();
}
else
{
labelListList globalFaceFaces(visibleFaceFaces.size());
forAll(globalFaceFaces, faceI)
{
globalFaceFaces[faceI] = renumber
(
compactToGlobal,
visibleFaceFaces[faceI]
);
}
labelListIOList IOglobalFaceFaces
(
IOobject
(
"globalFaceFaces",
mesh.facesInstance(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
globalFaceFaces
);
IOglobalFaceFaces.write();
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //