//--------------------------------------------------// //- move mesh //--------------------------------------------------// if(min(J.internalField()) > 0) { Info << "Moving mesh using least squares interpolation" << endl; leastSquaresVolPointInterpolation pointInterpolation(stressMesh); // Create point mesh pointMesh pMesh(stressMesh); wordList types ( pMesh.boundary().size(), calculatedFvPatchVectorField::typeName ); pointVectorField pointDU ( IOobject ( "pointDU", runTime.timeName(), stressMesh ), pMesh, dimensionedVector("zero", dimLength, vector::zero), types ); pointInterpolation.interpolate(DU, pointDU); const vectorField& pointDUI = pointDU.internalField(); //- Move mesh vectorField newPoints = stressMesh.allPoints(); forAll (pointDUI, pointI) { newPoints[pointI] += pointDUI[pointI]; } // Correct symmetryPlane points forAll(stressMesh.boundaryMesh(), patchI) { if (isA(stressMesh.boundaryMesh()[patchI])) { const labelList& meshPoints = stressMesh.boundaryMesh()[patchI].meshPoints(); vector avgN = gAverage(stressMesh.boundaryMesh()[patchI].pointNormals()); vector i(1, 0, 0); vector j(0, 1, 0); vector k(0, 0, 1); if (mag(avgN&i) > 0.95) { forAll(meshPoints, pI) { newPoints[meshPoints[pI]].x() = 0; } } else if (mag(avgN&j) > 0.95) { forAll(meshPoints, pI) { newPoints[meshPoints[pI]].y() = 0; } } else if (mag(avgN&k) > 0.95) { forAll(meshPoints, pI) { newPoints[meshPoints[pI]].z() = 0; } } } } # include "calcUnusedNewPoints.H" twoDPointCorrector twoDCorrector(stressMesh); twoDCorrector.correctPoints(newPoints); stressMesh.movePoints(newPoints); stressMesh.V00(); stressMesh.moving(false); } else { FatalErrorIn(args.executable()) << "Negative Jacobian" << exit(FatalError); }