/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | foam-extend: Open Source CFD \\ / O peration | Version: 4.0 \\ / A nd | Web: http://www.foam-extend.org \\/ M anipulation | For copyright notice see file Copyright ------------------------------------------------------------------------------- License This file is part of foam-extend. foam-extend is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. foam-extend is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with foam-extend. If not, see . Application channelFoam Description Incompressible LES solver for flow in a channel. Consistent formulation without time-step and relaxation dependence by Jasak and Tukovic. Author Hrvoje Jasak, Wikki Ltd. All rights reserved \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "singlePhaseTransportModel.H" #include "LESModel.H" #include "IFstream.H" #include "OFstream.H" #include "Random.H" #include "pisoControl.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { #include "setRootCase.H" #include "createTime.H" #include "createMesh.H" pisoControl piso(mesh); #include "readTransportProperties.H" #include "createFields.H" #include "initContinuityErrs.H" #include "createGradP.H" Info<< "\nStarting time loop\n" << endl; while (runTime.loop()) { Info<< "Time = " << runTime.timeName() << nl << endl; #include "CourantNo.H" sgsModel->correct(); // Time derivative matrix fvVectorMatrix ddtUEqn(fvm::ddt(U)); // Convection-diffusion matrix fvVectorMatrix HUEqn ( fvm::div(phi, U) + sgsModel->divDevBeff() == flowDirection*gradP ); if (piso.momentumPredictor()) { solve(ddtUEqn + HUEqn == -fvc::grad(p)); } // Prepare clean 1/a_p without time derivative contribution volScalarField rAU = 1.0/HUEqn.A(); // --- PISO loop while (piso.correct()) { // Calculate U from convection-diffusion matrix U = rAU*HUEqn.H(); // Consistently calculate flux piso.calcTransientConsistentFlux(phi, U, rAU, ddtUEqn); adjustPhi(phi, U, p); while (piso.correctNonOrthogonal()) { fvScalarMatrix pEqn ( fvm::laplacian ( fvc::interpolate(rAU)/piso.aCoeff(), p, "laplacian(rAU," + p.name() + ')' ) == fvc::div(phi) ); pEqn.setReference(pRefCell, pRefValue); pEqn.solve ( mesh.solutionDict().solver(p.select(piso.finalInnerIter())) ); if (piso.finalNonOrthogonalIter()) { phi -= pEqn.flux(); } } # include "continuityErrs.H" // Consistently reconstruct velocity after pressure equation piso.reconstructTransientVelocity(U, phi, ddtUEqn, rAU, p); } // Correct driving force for a constant mass flow rate // Extract the velocity in the flow direction dimensionedScalar magUbarStar = (flowDirection & U)().weightedAverage(mesh.V()); // Calculate the pressure gradient increment needed to // adjust the average flow-rate to the correct value dimensionedScalar gragPplus = (magUbar - magUbarStar)/rAU.weightedAverage(mesh.V()); U += gragPplus*rAU*flowDirection; gradP += gragPplus; Info<< "Uncorrected Ubar = " << magUbarStar.value() << tab << "pressure gradient = " << gradP.value() << endl; runTime.write(); #include "writeGradP.H" Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" << " ClockTime = " << runTime.elapsedClockTime() << " s" << nl << endl; } Info<< "End\n" << endl; return 0; } // ************************************************************************* //