/*--------------------------------*- C++ -*----------------------------------*\ | ========= | | | \\ / F ield | foam-extend: Open Source CFD | | \\ / O peration | Version: 3.0 | | \\ / A nd | Web: http://www.extend-project.de | | \\/ M anipulation | | \*---------------------------------------------------------------------------*/ FoamFile { version 2.0; format ; class dictionary; object blockMeshDict; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // // General macros to create 2D/extruded-2D meshes // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // convertToMeters 0.1; // Hub radius // Impeller-tip radius // Baffle-tip radius // Tank radius // MRF region radius // Thickness of 2D slab // Base z // Top z // Number of cells radially between hub and impeller tip // Number of cells radially in each of the two regions between // impeller and baffle tips // Number of cells radially between baffle tip and tank // Number of cells azimuthally in each of the 8 blocks // Number of cells in the thickness of the slab // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // vertices ( (0.2 0 0) // Vertex r0b = 0 (0.2 0 0) // Vertex r0sb = 1 (0.141421356364228 -0.141421356110391 0) // Vertex r1b = 2 (3.58979347393082e-10 -0.2 0) // Vertex r2b = 3 (3.58979347393082e-10 -0.2 0) // Vertex r2sb = 4 (-0.141421355856554 -0.141421356618065 0) // Vertex r3b = 5 (-0.2 7.17958694786164e-10 0) // Vertex r4b = 6 (-0.2 7.17958694786164e-10 0) // Vertex r4sb = 7 (-0.141421355856554 0.141421356618065 0) // Vertex r5b = 8 (3.58979347393082e-10 0.2 0) // Vertex r6b = 9 (3.58979347393082e-10 0.2 0) // Vertex r6sb = 10 (0.141421356364228 0.141421356110391 0) // Vertex r7b = 11 (0.5 0 0) // Vertex rb0b = 12 (0.353553390910569 -0.353553390275978 0) // Vertex rb1b = 13 (8.97448368482705e-10 -0.5 0) // Vertex rb2b = 14 (-0.353553389641386 -0.353553391545162 0) // Vertex rb3b = 15 (-0.5 1.79489673696541e-09 0) // Vertex rb4b = 16 (-0.353553389641386 0.353553391545162 0) // Vertex rb5b = 17 (8.97448368482705e-10 0.5 0) // Vertex rb6b = 18 (0.353553390910569 0.353553390275978 0) // Vertex rb7b = 19 (0.6 0 0) // Vertex ri0b = 20 (0.424264069092683 -0.424264068331174 0) // Vertex ri1b = 21 (1.07693804217925e-09 -0.6 0) // Vertex ri2b = 22 (-0.424264067569663 -0.424264069854194 0) // Vertex ri3b = 23 (-0.6 2.15387608435849e-09 0) // Vertex ri4b = 24 (-0.424264067569663 0.424264069854194 0) // Vertex ri5b = 25 (1.07693804217925e-09 0.6 0) // Vertex ri6b = 26 (0.424264069092683 0.424264068331174 0) // Vertex ri7b = 27 (0.7 0 0) // Vertex Rb0b = 28 (0.494974747274797 -0.494974746386369 0) // Vertex Rb1b = 29 (1.25642771587579e-09 -0.7 0) // Vertex Rb2b = 30 (-0.49497474549794 -0.494974748163226 0) // Vertex Rb3b = 31 (-0.7 2.51285543175157e-09 0) // Vertex Rb4b = 32 (-0.49497474549794 0.494974748163226 0) // Vertex Rb5b = 33 (1.25642771587579e-09 0.7 0) // Vertex Rb6b = 34 (0.494974747274797 0.494974746386369 0) // Vertex Rb7b = 35 (1 0 0) // Vertex R0b = 36 (0.707106781821139 -0.707106780551956 0) // Vertex R1b = 37 (0.707106781821139 -0.707106780551956 0) // Vertex R1sb = 38 (1.79489673696541e-09 -1 0) // Vertex R2b = 39 (-0.707106779282772 -0.707106783090323 0) // Vertex R3b = 40 (-0.707106779282772 -0.707106783090323 0) // Vertex R3sb = 41 (-1 3.58979347393082e-09 0) // Vertex R4b = 42 (-0.707106779282772 0.707106783090323 0) // Vertex R5b = 43 (-0.707106779282772 0.707106783090323 0) // Vertex R5sb = 44 (1.79489673696541e-09 1 0) // Vertex R6b = 45 (0.707106781821139 0.707106780551956 0) // Vertex R7b = 46 (0.707106781821139 0.707106780551956 0) // Vertex R7sb = 47 (0.2 0 0.1) // Vertex r0t = 48 (0.2 0 0.1) // Vertex r0st = 49 (0.141421356364228 -0.141421356110391 0.1) // Vertex r1t = 50 (3.58979347393082e-10 -0.2 0.1) // Vertex r2t = 51 (3.58979347393082e-10 -0.2 0.1) // Vertex r2st = 52 (-0.141421355856554 -0.141421356618065 0.1) // Vertex r3t = 53 (-0.2 7.17958694786164e-10 0.1) // Vertex r4t = 54 (-0.2 7.17958694786164e-10 0.1) // Vertex r4st = 55 (-0.141421355856554 0.141421356618065 0.1) // Vertex r5t = 56 (3.58979347393082e-10 0.2 0.1) // Vertex r6t = 57 (3.58979347393082e-10 0.2 0.1) // Vertex r6st = 58 (0.141421356364228 0.141421356110391 0.1) // Vertex r7t = 59 (0.5 0 0.1) // Vertex rb0t = 60 (0.353553390910569 -0.353553390275978 0.1) // Vertex rb1t = 61 (8.97448368482705e-10 -0.5 0.1) // Vertex rb2t = 62 (-0.353553389641386 -0.353553391545162 0.1) // Vertex rb3t = 63 (-0.5 1.79489673696541e-09 0.1) // Vertex rb4t = 64 (-0.353553389641386 0.353553391545162 0.1) // Vertex rb5t = 65 (8.97448368482705e-10 0.5 0.1) // Vertex rb6t = 66 (0.353553390910569 0.353553390275978 0.1) // Vertex rb7t = 67 (0.6 0 0.1) // Vertex ri0t = 68 (0.424264069092683 -0.424264068331174 0.1) // Vertex ri1t = 69 (1.07693804217925e-09 -0.6 0.1) // Vertex ri2t = 70 (-0.424264067569663 -0.424264069854194 0.1) // Vertex ri3t = 71 (-0.6 2.15387608435849e-09 0.1) // Vertex ri4t = 72 (-0.424264067569663 0.424264069854194 0.1) // Vertex ri5t = 73 (1.07693804217925e-09 0.6 0.1) // Vertex ri6t = 74 (0.424264069092683 0.424264068331174 0.1) // Vertex ri7t = 75 (0.7 0 0.1) // Vertex Rb0t = 76 (0.494974747274797 -0.494974746386369 0.1) // Vertex Rb1t = 77 (1.25642771587579e-09 -0.7 0.1) // Vertex Rb2t = 78 (-0.49497474549794 -0.494974748163226 0.1) // Vertex Rb3t = 79 (-0.7 2.51285543175157e-09 0.1) // Vertex Rb4t = 80 (-0.49497474549794 0.494974748163226 0.1) // Vertex Rb5t = 81 (1.25642771587579e-09 0.7 0.1) // Vertex Rb6t = 82 (0.494974747274797 0.494974746386369 0.1) // Vertex Rb7t = 83 (1 0 0.1) // Vertex R0t = 84 (0.707106781821139 -0.707106780551956 0.1) // Vertex R1t = 85 (0.707106781821139 -0.707106780551956 0.1) // Vertex R1st = 86 (1.79489673696541e-09 -1 0.1) // Vertex R2t = 87 (-0.707106779282772 -0.707106783090323 0.1) // Vertex R3t = 88 (-0.707106779282772 -0.707106783090323 0.1) // Vertex R3st = 89 (-1 3.58979347393082e-09 0.1) // Vertex R4t = 90 (-0.707106779282772 0.707106783090323 0.1) // Vertex R5t = 91 (-0.707106779282772 0.707106783090323 0.1) // Vertex R5st = 92 (1.79489673696541e-09 1 0.1) // Vertex R6t = 93 (0.707106781821139 0.707106780551956 0.1) // Vertex R7t = 94 (0.707106781821139 0.707106780551956 0.1) // Vertex R7st = 95 ); blocks ( // block0 hex (0 2 13 12 48 50 61 60) rotor (12 12 1) simpleGrading (1 1 1) // block1 hex (2 4 14 13 50 52 62 61) rotor (12 12 1) simpleGrading (1 1 1) // block2 hex (3 5 15 14 51 53 63 62) rotor (12 12 1) simpleGrading (1 1 1) // block3 hex (5 7 16 15 53 55 64 63) rotor (12 12 1) simpleGrading (1 1 1) // block4 hex (6 8 17 16 54 56 65 64) rotor (12 12 1) simpleGrading (1 1 1) // block5 hex (8 10 18 17 56 58 66 65) rotor (12 12 1) simpleGrading (1 1 1) // block6 hex (9 11 19 18 57 59 67 66) rotor (12 12 1) simpleGrading (1 1 1) // block7 hex (11 1 12 19 59 49 60 67) rotor (12 12 1) simpleGrading (1 1 1) // block0 hex (12 13 21 20 60 61 69 68) rotor (12 4 1) simpleGrading (1 1 1) // block1 hex (13 14 22 21 61 62 70 69) rotor (12 4 1) simpleGrading (1 1 1) // block2 hex (14 15 23 22 62 63 71 70) rotor (12 4 1) simpleGrading (1 1 1) // block3 hex (15 16 24 23 63 64 72 71) rotor (12 4 1) simpleGrading (1 1 1) // block4 hex (16 17 25 24 64 65 73 72) rotor (12 4 1) simpleGrading (1 1 1) // block5 hex (17 18 26 25 65 66 74 73) rotor (12 4 1) simpleGrading (1 1 1) // block6 hex (18 19 27 26 66 67 75 74) rotor (12 4 1) simpleGrading (1 1 1) // block7 hex (19 12 20 27 67 60 68 75) rotor (12 4 1) simpleGrading (1 1 1) // block0 hex (20 21 29 28 68 69 77 76) stator (12 4 1) simpleGrading (1 1 1) // block1 hex (21 22 30 29 69 70 78 77) stator (12 4 1) simpleGrading (1 1 1) // block2 hex (22 23 31 30 70 71 79 78) stator (12 4 1) simpleGrading (1 1 1) // block3 hex (23 24 32 31 71 72 80 79) stator (12 4 1) simpleGrading (1 1 1) // block4 hex (24 25 33 32 72 73 81 80) stator (12 4 1) simpleGrading (1 1 1) // block5 hex (25 26 34 33 73 74 82 81) stator (12 4 1) simpleGrading (1 1 1) // block6 hex (26 27 35 34 74 75 83 82) stator (12 4 1) simpleGrading (1 1 1) // block7 hex (27 20 28 35 75 68 76 83) stator (12 4 1) simpleGrading (1 1 1) // block0 hex (28 29 38 36 76 77 86 84) stator (12 12 1) simpleGrading (1 1 1) // block1 hex (29 30 39 37 77 78 87 85) stator (12 12 1) simpleGrading (1 1 1) // block2 hex (30 31 41 39 78 79 89 87) stator (12 12 1) simpleGrading (1 1 1) // block3 hex (31 32 42 40 79 80 90 88) stator (12 12 1) simpleGrading (1 1 1) // block4 hex (32 33 44 42 80 81 92 90) stator (12 12 1) simpleGrading (1 1 1) // block5 hex (33 34 45 43 81 82 93 91) stator (12 12 1) simpleGrading (1 1 1) // block6 hex (34 35 47 45 82 83 95 93) stator (12 12 1) simpleGrading (1 1 1) // block7 hex (35 28 36 46 83 76 84 94) stator (12 12 1) simpleGrading (1 1 1) ); edges ( arc 0 2 (0.184775906536601 -0.0765366863901046 0) arc 2 4 (0.0765366867217582 -0.184775906399226 0) arc 3 5 (-0.0765366860584508 -0.184775906673977 0) arc 5 7 (-0.18477590626185 -0.0765366870534118 0) arc 6 8 (-0.18477590626185 0.0765366870534118 0) arc 8 10 (-0.0765366860584508 0.184775906673977 0) arc 9 11 (0.0765366867217582 0.184775906399226 0) arc 11 1 (0.184775906536601 0.0765366863901046 0) arc 12 13 (0.461939766341503 -0.191341715975262 0) arc 13 14 (0.191341716804395 -0.461939765998065 0) arc 14 15 (-0.191341715146127 -0.461939766684942 0) arc 15 16 (-0.461939765654626 -0.19134171763353 0) arc 16 17 (-0.461939765654626 0.19134171763353 0) arc 17 18 (-0.191341715146127 0.461939766684942 0) arc 18 19 (0.191341716804395 0.461939765998065 0) arc 19 12 (0.461939766341503 0.191341715975262 0) arc 20 21 (0.554327719609804 -0.229610059170314 0) arc 21 22 (0.229610060165275 -0.554327719197677 0) arc 22 23 (-0.229610058175352 -0.55432772002193 0) arc 23 24 (-0.554327718785551 -0.229610061160235 0) arc 24 25 (-0.554327718785551 0.229610061160235 0) arc 25 26 (-0.229610058175352 0.55432772002193 0) arc 26 27 (0.229610060165275 0.554327719197677 0) arc 27 20 (0.554327719609804 0.229610059170314 0) arc 28 29 (0.646715672878104 -0.267878402365366 0) arc 29 30 (0.267878403526154 -0.64671567239729 0) arc 30 31 (-0.267878401204578 -0.646715673358918 0) arc 31 32 (-0.646715671916476 -0.267878404686941 0) arc 32 33 (-0.646715671916476 0.267878404686941 0) arc 33 34 (-0.267878401204578 0.646715673358918 0) arc 34 35 (0.267878403526154 0.64671567239729 0) arc 35 28 (0.646715672878104 0.267878402365366 0) arc 36 38 (0.923879532683006 -0.382683431950523 0) arc 37 39 (0.382683433608791 -0.923879531996129 0) arc 39 41 (-0.382683430292254 -0.923879533369883 0) arc 40 42 (-0.923879531309252 -0.382683435267059 0) arc 42 44 (-0.923879531309252 0.382683435267059 0) arc 43 45 (-0.382683430292254 0.923879533369883 0) arc 45 47 (0.382683433608791 0.923879531996129 0) arc 46 36 (0.923879532683006 0.382683431950523 0) arc 48 50 (0.184775906536601 -0.0765366863901046 0.1) arc 50 52 (0.0765366867217582 -0.184775906399226 0.1) arc 51 53 (-0.0765366860584508 -0.184775906673977 0.1) arc 53 55 (-0.18477590626185 -0.0765366870534118 0.1) arc 54 56 (-0.18477590626185 0.0765366870534118 0.1) arc 56 58 (-0.0765366860584508 0.184775906673977 0.1) arc 57 59 (0.0765366867217582 0.184775906399226 0.1) arc 59 49 (0.184775906536601 0.0765366863901046 0.1) arc 60 61 (0.461939766341503 -0.191341715975262 0.1) arc 61 62 (0.191341716804395 -0.461939765998065 0.1) arc 62 63 (-0.191341715146127 -0.461939766684942 0.1) arc 63 64 (-0.461939765654626 -0.19134171763353 0.1) arc 64 65 (-0.461939765654626 0.19134171763353 0.1) arc 65 66 (-0.191341715146127 0.461939766684942 0.1) arc 66 67 (0.191341716804395 0.461939765998065 0.1) arc 67 60 (0.461939766341503 0.191341715975262 0.1) arc 68 69 (0.554327719609804 -0.229610059170314 0.1) arc 69 70 (0.229610060165275 -0.554327719197677 0.1) arc 70 71 (-0.229610058175352 -0.55432772002193 0.1) arc 71 72 (-0.554327718785551 -0.229610061160235 0.1) arc 72 73 (-0.554327718785551 0.229610061160235 0.1) arc 73 74 (-0.229610058175352 0.55432772002193 0.1) arc 74 75 (0.229610060165275 0.554327719197677 0.1) arc 75 68 (0.554327719609804 0.229610059170314 0.1) arc 76 77 (0.646715672878104 -0.267878402365366 0.1) arc 77 78 (0.267878403526154 -0.64671567239729 0.1) arc 78 79 (-0.267878401204578 -0.646715673358918 0.1) arc 79 80 (-0.646715671916476 -0.267878404686941 0.1) arc 80 81 (-0.646715671916476 0.267878404686941 0.1) arc 81 82 (-0.267878401204578 0.646715673358918 0.1) arc 82 83 (0.267878403526154 0.64671567239729 0.1) arc 83 76 (0.646715672878104 0.267878402365366 0.1) arc 84 86 (0.923879532683006 -0.382683431950523 0.1) arc 85 87 (0.382683433608791 -0.923879531996129 0.1) arc 87 89 (-0.382683430292254 -0.923879533369883 0.1) arc 88 90 (-0.923879531309252 -0.382683435267059 0.1) arc 90 92 (-0.923879531309252 0.382683435267059 0.1) arc 91 93 (-0.382683430292254 0.923879533369883 0.1) arc 93 95 (0.382683433608791 0.923879531996129 0.1) arc 94 84 (0.923879532683006 0.382683431950523 0.1) ); boundary ( rotor { type wall; faces ( (0 2 50 48) (2 4 52 50) (3 5 53 51) (5 7 55 53) (6 8 56 54) (8 10 58 56) (9 11 59 57) (11 1 49 59) (0 12 60 48) (1 12 60 49) (3 14 62 51) (4 14 62 52) (6 16 64 54) (7 16 64 55) (9 18 66 57) (10 18 66 58) ); } stator { type wall; faces ( (36 38 86 84) (37 39 87 85) (39 41 89 87) (40 42 90 88) (42 44 92 90) (43 45 93 91) (45 47 95 93) (46 36 84 94) (37 29 77 85) (38 29 77 86) (40 31 79 88) (41 31 79 89) (43 33 81 91) (44 33 81 92) (46 35 83 94) (47 35 83 95) ); } front { type empty; faces ( (48 50 61 60) (50 52 62 61) (51 53 63 62) (53 55 64 63) (54 56 65 64) (56 58 66 65) (57 59 67 66) (59 49 60 67) (60 61 69 68) (61 62 70 69) (62 63 71 70) (63 64 72 71) (64 65 73 72) (65 66 74 73) (66 67 75 74) (67 60 68 75) (68 69 77 76) (69 70 78 77) (70 71 79 78) (71 72 80 79) (72 73 81 80) (73 74 82 81) (74 75 83 82) (75 68 76 83) (76 77 86 84) (77 78 87 85) (78 79 89 87) (79 80 90 88) (80 81 92 90) (81 82 93 91) (82 83 95 93) (83 76 84 94) ); } back { type empty; faces ( (0 12 13 2) (2 13 14 4) (3 14 15 5) (5 15 16 7) (6 16 17 8) (8 17 18 10) (9 18 19 11) (11 19 12 1) (12 20 21 13) (13 21 22 14) (14 22 23 15) (15 23 24 16) (16 24 25 17) (17 25 26 18) (18 26 27 19) (19 27 20 12) (20 28 29 21) (21 29 30 22) (22 30 31 23) (23 31 32 24) (24 32 33 25) (25 33 34 26) (26 34 35 27) (27 35 28 20) (28 36 38 29) (29 37 39 30) (30 39 41 31) (31 40 42 32) (32 42 44 33) (33 43 45 34) (34 45 47 35) (35 46 36 28) ); } ); // ************************************************************************* //