/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright (C) 2004-2007 Hrvoje Jasak \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Application elasticSolidFoam Description Transient/steady-state segregated finite-volume solver for small strain elastic solid bodies. Displacement field U is solved for using a total Lagrangian approach, also generating the strain tensor field epsilon and stress tensor field sigma. With optional multi-material solid interface correction ensuring correct tractions on multi-material interfaces Author Philip Cardiff multi-material by Tukovic et al. 2012 \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "constitutiveModel.H" #include "solidInterface.H" #include "clipGauge.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { # include "setRootCase.H" # include "createTime.H" # include "createMesh.H" # include "createFields.H" # include "createHistory.H" # include "readDivSigmaExpMethod.H" # include "createSolidInterfaceNoModify.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // Info<< "\nStarting time loop\n" << endl; while(runTime.loop()) { Info<< "Time: " << runTime.timeName() << nl << endl; # include "readStressedFoamControls.H" int iCorr = 0; scalar initialResidual = 0; lduMatrix::solverPerformance solverPerf; scalar relativeResidual = 1; lduMatrix::debug=0; if (predictor) { Info << "\nPredicting U, gradU and snGradU based on V, gradV and snGradV\n" << endl; U += V*runTime.deltaT(); gradU += gradV*runTime.deltaT(); snGradU += snGradV*runTime.deltaT(); } do { U.storePrevIter(); # include "calculateDivSigmaExp.H" // linear momentum equation fvVectorMatrix UEqn ( rho*fvm::d2dt2(U) == fvm::laplacian(2*muf + lambdaf, U, "laplacian(DU,U)") + divSigmaExp ); // if(thirdOrderCorrection) // { // # include "calculateThirdOrderDissipativeTerm.H" // UEqn -= divThirdOrderTerm; // } if(solidInterfaceCorr) { solidInterfacePtr->correct(UEqn); } // if(relaxEqn) // { // UEqn.relax(); // } solverPerf = UEqn.solve(); if(iCorr == 0) { initialResidual = solverPerf.initialResidual(); aitkenInitialRes = gMax(mag(U.internalField())); } if(aitkenRelax) { # include "aitkenRelaxation.H" } else { U.relax(); } // now use out leastSquaresSolidInterface grad scheme // if(solidInterfaceCorr) // { // gradU = solidInterfacePtr->grad(U); // } // else // { gradU = fvc::grad(U); // } //gradU = solidInterfacePtr->grad(U); //gradU = fvc::grad(U); # include "calculateRelativeResidual.H" if(iCorr % infoFrequency == 0) { Info << "\tTime " << runTime.value() << ", Corrector " << iCorr << ", Solving for " << U.name() << " using " << solverPerf.solverName() << ", res = " << solverPerf.initialResidual() << ", rel res = " << relativeResidual; if(aitkenRelax) Info << ", aitken = " << aitkenTheta; Info << ", inner iters = " << solverPerf.nIterations() << endl; } } while ( iCorr++ == 0 || (solverPerf.initialResidual() > convergenceTolerance //relativeResidual > convergenceTolerance && iCorr < nCorr) ); Info << nl << "Time " << runTime.value() << ", Solving for " << U.name() << ", Initial residual = " << initialResidual << ", Final residual = " << solverPerf.initialResidual() << ", Relative residual = " << relativeResidual << ", No outer iterations " << iCorr << nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s" << " ClockTime = " << runTime.elapsedClockTime() << " s" << endl; lduMatrix::debug=0; if(predictor) { V = fvc::ddt(U); gradV = fvc::ddt(gradU); snGradV = (snGradU - snGradU.oldTime())/runTime.deltaT(); } # include "calculateEpsilonSigma.H" # include "writeFields.H" # include "writeHistory.H" Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s\n\n" << endl; } Info<< "End\n" << endl; return(0); } // ************************************************************************* //