/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright (C) 1991-2005 OpenCFD Ltd. \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Application elasticPlasticNonLinULSolidFoam Description Finite volume structural solver employing a incremental strain updated Lagrangian approach. Valid for small strains, finite displacements and finite rotations. Note: the reason the solver is not strictly valid for large strains is because the constitutive stiffness tensor is not rotated. For an updated Lagrangian solver which does rotate the stiffness tensor, and hence is strictly Valid for large strains, use elasticOrthoNonLinULSolidFoam. Author Philip Cardiff UCD philip.cardiff@gmail.com \*---------------------------------------------------------------------------*/ #include "fvCFD.H" #include "constitutiveModel.H" #include "volPointInterpolation.H" #include "pointPatchInterpolation.H" #include "primitivePatchInterpolation.H" #include "pointFields.H" #include "twoDPointCorrector.H" #include "leastSquaresVolPointInterpolation.H" #include "transformGeometricField.H" #include "solidContactFvPatchVectorField.H" #include "pointMesh.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // int main(int argc, char *argv[]) { # include "setRootCase.H" # include "createTime.H" # include "createMesh.H" # include "createFields.H" # include "createHistory.H" # include "readDivDSigmaExpMethod.H" # include "readDivDSigmaNonLinExpMethod.H" # include "readMoveMeshMethod.H" //* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // Info << "\nStarting time loop\n" << endl; for (runTime++; !runTime.end(); runTime++) { Info<< "Time = " << runTime.timeName() << nl << endl; # include "readStressedFoamControls.H" int iCorr = 0; lduMatrix::solverPerformance solverPerf; scalar initialResidual = 0; scalar relativeResidual = GREAT; lduMatrix::debug = 0; //- to minimise accumulation of errors // volVectorField divSigmaOld = fvc::div(sigma); do { DU.storePrevIter(); # include "calculateDivDSigmaExp.H" # include "calculateDivDSigmaNonLinExp.H" //----------------------------------------------------// //- updated lagrangian large strain momentum equation //----------------------------------------------------// fvVectorMatrix DUEqn ( fvm::d2dt2(rho,DU) == fvm::laplacian(2*muf + lambdaf, DU, "laplacian(DDU,DU)") + divDSigmaExp + divDSigmaNonLinExp //- fvc::div(2*mu*DEpsilonP, "div(sigma)") - fvc::div(2*muf*( mesh.Sf() & fvc::interpolate(DEpsilonP)) ) ); if(nonLinearSemiImplicit) { // experimental // we can treat the nonlinear term (gradDU & gradDU.T()) in a // semi-implicit over-relaxed manner // this should improve convergence when gradDU is large // but maybe not execution time DUEqn -= fvm::laplacian((2*mu + lambda)*gradDU, DU, "laplacian(DDU,DU)") - fvc::div( (2*mu + lambda)*(gradDU&gradDU), "div(sigma)"); } solverPerf = DUEqn.solve(); if(iCorr == 0) { initialResidual = solverPerf.initialResidual(); } if(aitkenRelax) { # include "aitkenRelaxation.H" } else { DU.relax(); } gradDU = fvc::grad(DU); // correct plasticty term rheology.correct(); // correct elastic properties // for nonlinear elastic materials //mu = rheology.newMu(); //lambda = rheology.newLambda(); //muf = fvc::interpolate(mu); //lambdaf = fvc::interpolate(lambda); # include "calculateDEpsilonDSigma.H" # include "calculateRelativeResidual.H" if(iCorr % infoFrequency == 0) { Info << "\tTime " << runTime.value() << ", Corrector " << iCorr << ", Solving for " << DU.name() << " using " << solverPerf.solverName() << ", res = " << solverPerf.initialResidual() << ", rel res = " << relativeResidual; if(aitkenRelax) Info << ", aitken = " << aitkenTheta; Info << ", iters = " << solverPerf.nIterations() << endl; } } while ( iCorr++ < 2 || (//solverPerf.initialResidual() > convergenceTolerance relativeResidual > convergenceTolerance && iCorr < nCorr) ); lduMatrix::debug = 1; Info << nl << "Time " << runTime.value() << ", Solving for " << DU.name() << ", Initial residual = " << initialResidual << ", Final residual = " << solverPerf.initialResidual() << ", Final rel residual = " << relativeResidual << ", No outer iterations " << iCorr << endl; rheology.updateYieldStress(); U += DU; epsilon += DEpsilon; epsilonP += DEpsilonP; sigma += DSigma; # include "moveMesh.H" # include "rotateFields.H" # include "writeFields.H" # include "writeHistory.H" Info << nl << "ExecutionTime = " << runTime.elapsedCpuTime() << " s" << " ClockTime = " << runTime.elapsedClockTime() << " s" << endl; } Info<< "End\n" << endl; return(0); } // ************************************************************************* //