/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | foam-extend: Open Source CFD
\\ / O peration |
\\ / A nd | For copyright notice see file Copyright
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of foam-extend.
foam-extend is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
foam-extend is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with foam-extend. If not, see .
\*---------------------------------------------------------------------------*/
#include "polySplineEdge.H"
#include "BSpline.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(polySplineEdge, 0);
// Add the curvedEdge constructor functions to the hash tables
curvedEdge::addIstreamConstructorToTable
addPolySplineEdgeIstreamConstructorToTable_;
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
// intervening : returns a list of the points making up the polyLineEdge
// which describes the spline. nbetweenKnots is the number of points
// placed between each knot : this ensures that the knot locations
// are retained as a subset of the polyLine points.
// note that the points are evenly spaced in the parameter mu, not
// in real space
Foam::pointField Foam::polySplineEdge::intervening
(
const pointField& otherknots,
const label nbetweenKnots,
const vector& fstend,
const vector& sndend
)
{
BSpline spl(knotlist(points_, start_, end_, otherknots), fstend, sndend);
label nSize(nsize(otherknots.size(), nbetweenKnots));
pointField ans(nSize);
label N = spl.nKnots();
scalar init = 1.0/(N - 1);
scalar interval = (N - scalar(3))/N;
interval /= otherknots.size() + 1;
interval /= nbetweenKnots + 1;
ans[0] = points_[start_];
register scalar index(init);
for (register label i=1; i