Info<< "Reading field p\n" << endl; volScalarField p ( IOobject ( "p", runTime.timeName(), mesh, IOobject::MUST_READ, IOobject::AUTO_WRITE ), mesh ); Info<< "Reading field alpha1\n" << endl; volScalarField alpha1 ( IOobject ( "alpha1", runTime.timeName(), mesh, IOobject::MUST_READ, IOobject::AUTO_WRITE ), mesh ); Info<< "Calculating field alpha1\n" << endl; volScalarField alpha2("alpha2", scalar(1) - alpha1); Info<< "Reading field U\n" << endl; volVectorField U ( IOobject ( "U", runTime.timeName(), mesh, IOobject::MUST_READ, IOobject::AUTO_WRITE ), mesh ); #include "createPhi.H" Info<< "Reading transportProperties\n" << endl; twoPhaseMixture twoPhaseProperties(U, phi); dimensionedScalar rho10 ( twoPhaseProperties.subDict ( twoPhaseProperties.phase1Name() ).lookup("rho0") ); dimensionedScalar rho20 ( twoPhaseProperties.subDict ( twoPhaseProperties.phase2Name() ).lookup("rho0") ); dimensionedScalar psi1 ( twoPhaseProperties.subDict ( twoPhaseProperties.phase1Name() ).lookup("psi") ); dimensionedScalar psi2 ( twoPhaseProperties.subDict ( twoPhaseProperties.phase2Name() ).lookup("psi") ); dimensionedScalar pMin(twoPhaseProperties.lookup("pMin")); volScalarField rho1 = rho10 + psi1*p; volScalarField rho2 = rho20 + psi2*p; volScalarField rho ( IOobject ( "rho", runTime.timeName(), mesh, IOobject::READ_IF_PRESENT, IOobject::AUTO_WRITE ), alpha1*rho1 + alpha2*rho2 ); // Mass flux // Initialisation does not matter because rhoPhi is reset after the // alpha1 solution before it is used in the U equation. surfaceScalarField rhoPhi ( IOobject ( "rho*phi", runTime.timeName(), mesh, IOobject::NO_READ, IOobject::NO_WRITE ), fvc::interpolate(rho)*phi ); volScalarField dgdt = pos(alpha2)*fvc::div(phi)/max(alpha2, scalar(0.0001)); // Construct interface from alpha1 distribution interfaceProperties interface(alpha1, U, twoPhaseProperties); // Construct incompressible turbulence model autoPtr turbulence ( incompressible::turbulenceModel::New(U, phi, twoPhaseProperties) ); mesh.schemesDict().setFluxRequired(p.name());